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Abstract. Session types specify communications protocols for languages with message-passing
concurrency. I claim that denotational semantics elucidate the structure of session-typed languages
and allow us to reason about programs written in these languages in ways that are complementary to
existing approaches. To support this thesis statement, I have developed a domain-theoretic semantics
for polarized SILL, a session-typed language that cohesively integrates functional computation and
message-passing concurrent computation. I propose expanding this semantics to support the features
of dependently-session-typed languages and of computational interpretations of adjoint logic. To
establish the complementary nature of these semantics, I propose showing that they are sound and
adequate relative to existing substructural operational semantics for these languages. To show that
these denotational semantics can tractably be used to reason about programs, I propose using my
semantics to validate various non-trivial process equivalences and to verify process correctness.



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09

Contents

List of Figures v

Chapter 1. Introduction 1

Chapter 2. Background and Notation 3
2.1. Categorical and Domain-heoretic Background and Notation 4

Chapter 3. CompletedWork 7
3.1. A Domain Semantics for Polarized SILL 7

Chapter 4. Ongoing Work 13
4.1. 2-Categorical Analysis of Fixed Points of Functors 13
4.2. Canonical Interpretations of Session Types and Junk-Freedom 18

Chapter 5. Core ProposedWork 21
5.1. Soundness and Adequacy 21
5.2. Domain Semantics for Adjoint Logic 25
5.3. Semantics for Dependent Session Types 26
5.4. Applications 28

Chapter 6. Optional ProposedWork 33
6.1. Semantics for Equirecursion 33
6.2. Semantics for Subtyping 34
6.3. Complete Axioms for Trace Operators 36

Chapter 7. Conclusion and Timeline 39

Bibliography 41

iii



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09

List of Figures

3.1 Term formation in polarized SILL 8
3.2 Process formation in polarized SILL 8
3.3 Type formation in polarized SILL 9

6.1 Type formation rules in the equirecursive setting 34
6.2 Deûnitional equality of types in the equirecursive setting 34

v



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09

CHAPTER 1

Introduction

he proofs-as-programs correspondence between linear logic and the session-typed π-calculus
is the foundation of many programming languages [TCP13; Wad14; CP10; TY18a] for message-
passing concurrency. Many techniques exist for reasoning about these languages. For example,
Pérez et al. [Pér+12; Pér+14] and Toninho [Ton15] introduced logical-relations-based approaches.
Gommerstadt, Jia, and Pfenning [GJP18] introduced “monitors” to ensure correctness at runtime.
Game semantics [CY19] and denotational semantics [Atk17] have further enriched our under-
standing of session-typed languages. Very few approaches treat inductive and co-inductive session
types [LM16; DP19] or general recursive types. Recent work [Kav20] gave the ûrst denotational
semantics to a higher-order session-typed language with general recursion.

Denotational semantics havemany applications. At a fundamental level, they help us under-
stand a language and its computational phenomena. More practically, denotational semantics are
a tool that lets us reason modularly about programs. his is because denotational semantics are
automatically compositional. Practical applications of denotational semantics range from compiler
correctness [Wan95] to program veriûcation [Pol81]. Denotational semantics also provide a notion
of program equivalence.

Given these applications, it seems proûtable to explore denotational semantics for languages
with session types. hese languages include computational interpretations of adjoint logic and
session-typed languages with dependent types. Adjoint logic [Ben95; BW96; Ree09; Pru+18] is a
framework in which we can uniformly combinemultiple logical systems. It has a rich computa-
tional interpretation that coherently combines message-passing, shared-memory, and sequential
computation [PP19b]. he rich types of dependently-session-typed languages [TCP11; TY18a;
TY18b] allow programmers to precisely specify very complex protocols.

hese concerns motivate the following thesis statement:
Denotational semantics elucidate the structure of session-typed languages and

allow us to reason about programs written in these languages in ways that are

complementary to existing approaches.

Below, I further motivate this thesis statement and propose research to defend it. In chapter 2,
I give an overview of session types and ûx the notation used in the remainder of this proposal. I
also introduce concepts and terminology that will be used throughout. Chapters 3 to 6 propose
work that should form the body ofmy dissertation. I motivate each unit of proposed work and give
a survey of existing related work. I then �esh out details ofmy proposed contribution. Chapter 7
gives a tentative timeline for completing each unit of proposed work.

1
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CHAPTER 2

Background andNotation

A process is a computing agent that interacts with its environment through communication.
Communication happens over named channels that can be thought of as wires that carry bidirec-
tional communication. To ensure correctness, it is useful to specify the communication that are
permitted on a channel. Session types specify these communication protocols [Hon93; THK94].

Session types and linear logic are intimately related [CP10; Wad14]. Indeed, we can give a
proofs-as-programs interpretations to sequent calculi for linear logic, where proofs correspond
to processes and propositions correspond to session types. Process reductions correspond to cut
elimination.

We brie�y illustrate this relationship. Consider the intuitionistic linear logic proposition 1. It
has the following right and le� rules:

⋅ ⊢ 1 (1R)
∆ ⊢ C
∆, 1 ⊢ C (1L)

In the proofs-as-processes interpretation, process a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0 communicates
over channels a i satisfying protocols A i . We give the above rules the following proofs-as-processes
interpretation:

⋅ ⊢ close a ∶∶ a ∶ 1 (1R) ∆ ⊢ wait a; P ∶∶ c ∶ C
∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C (1L)

We interpret the process close a as sending a close message on the channel a and terminating,
while the process wait a; P waits for the channel a to close and continues as P. he only possible
communication satisfying the session type 1 is the closemessage.

he (Cut) rule of intuitionistic linear logic is interpreted as process composition, where we
compose two processes P and Q to communicate on a common channel a:

∆1 ⊢ P ∶∶ a ∶ A a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C
∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C (Cut)

In a synchronous setting, we can capture the operational intuitions for closing channels using
the reduction rule:

(1) (a ← close a; (wait a; P))Ð→ P

To illustrate how cut-elimination corresponds to process reduction, consider the process:

⋅ ⊢ close a ∶∶ a ∶ 1 (1R) ⋅ ⊢ close c ∶∶ c ∶ 1 (1R)

a ∶ 1 ⊢ wait a; close c ∶∶ c ∶ 1 (1L)

⋅ ⊢ a ← close a; wait a; close c ∶∶ c ∶ 1 (Cut)

he cut-elimination algorithm [Pfe00] converts this proof to the proof:

⋅ ⊢ close c ∶∶ c ∶ 1 (1R)

his exactly mirrors the reduction (1).
We can give proofs-as-processes interpretations to the remainder of intuitionistic and classical

linear logic. hese interpretations have been extended to support various programming constructs.
For example, SILL [TCP13] includes a functional programming layer and general recursion. It will
be the subject of section 3.1.

3
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4 2. BACKGROUND AND NOTATION

2.1. Categorical and Domain-heoretic Background andNotation

We frequently use indexed products. Wemay make their indices explicit to reduce ambiguity.
We write (d1 ∶ D1) ×⋯ × (dn ∶ Dn) for the product of the D i indexed by the d i . Given δ i ∈ D i , we
write (d1 ∶ δ1 , . . . , dn ∶ δn) for an element of this product. Given an indexed product∏i∈I D i and a
subset J ⊆ I, we write πI

J
or πJ for the projection∏i∈I D i →∏ j∈J D j .

We write ω-aBC for the category of Scott domains (ω-algebraic bounded-complete dcpos)
and continuous functions. We write ω-aBC�! for the subcategory of strict functions.

he category ω-aBC has a continuous least-fixed-point operator fix ∶ [D → D] → D for
each object D. It also has a continuous ûxed-point operator (⋅)† ∶ [A× X → X]→ [A→ X] given
by f †(a) = fix(λx . f (a, x)). It satisûes the ûxed-point identity of [BÉ96]: f † = f ○ ⟨id, f †⟩.

he category ω-aBC is also equipped with a trace operator [AHS02; CŞ90; JSV96]. It ûxes
the X component of a morphism f ∶ A × X → B × X to produce a morphism TrX( f ) ∶ A → B.
It is given by TrX( f ) = πB×X

B
○ f ○ ⟨idA, (πB×XX

○ f )†⟩. It has the following Knaster-Tarski-style
formulation: TrX( f )(a) = πB(

d
{(b, x) ∣ f (a, x) ⊑ (b, x)}).

he lifting functors (−)� ∶ ω-aBC → ω-aBC and (−)� ∶ ω-aBC�! → ω-aBC�! are re-
spectively le�-adjoint to the identity functors idω-aBC and idω-aBC�! . he units id → (−)� are
respectively called up and up�!. he counits (−)� → id are equal and are called down. Write [d] for
upD(d) ∈ D�. he domain D� is obtained by adjoining a new bottom element to D. hemorphism
f� ∶ D� → E� is given by f�(�D�) = �E� and f�(d) = [ f (d)] for d ∈ D. Given a functor F, we
abbreviate the composition (−)� ○ F as F�.

To make a function f ∶ ∏i∈I A i → B strict in a component j ∈ I, we use the continuous
function strict j ∶ [∏i∈I A i → B]→ [∏i∈I A i → B]:

(2) strict j( f ) ((a i)i∈I) =
⎧⎪⎪⎨⎪⎪⎩

�B if a j = �A j

f ((a i)i∈I) otherwise.

An O-category [SP82, Deûnition 5; Gun92, p. 322] is a category such that

(1) every hom-set [C → D] is a dcpo,
(2) composition ofmorphisms is continuous with respect to the partial ordering on arrows.

Examples ofO-categories include ω-aBC, ω-aBC�!, and functor categories [C→ D] wheneverD
is an O-category. A functor F ∶ D → E between O-categories is locally continuous if themaps
f ↦ F( f ) ∶ [D1 → D2]→ [F(D1)→ F(D2)] are continuous for all objects D1 ,D2 ofD. We write
[D l.c.Ð→ E] for the category of locally continuous functors fromD to E. Its morphisms are natural
transformations.

A pair of morphisms e ∶ A → B and p ∶ B → A in an O-category K forms an embedding-
projection pair or e-p-pair (e , p) if p○e = idA and e○p ⊑ idB . In this case,we sayA is a subdomain
of B. We say e is an embedding and p is a projection. hemorphisms e and p uniquely determine
each other and p is always ameet-homomorphism [AJ95, Propositions 3.1.10 and 3.1.13]. Given an
e-p-pair ( f , g), wemay write g e for f and f p for g. We write Ke and Kp for the subcategories of K
where all morphisms are embeddings and projections, respectively.

Given two functors F ,G ∶ C → K into an O-category K, we say a natural transformation
є ∶ F ⇒ G is a natural pointwise-embedding if each component єC ∶ FC → GC is an embedding.
We say that it is a natural embedding if the family of projections {єp

C
∶ GC → FC} is a natural

transformation G ⇒ F, i.e., if є is an embedding in the functor category [C→ K]. he deûnitions
of natural pointwise-projection and natural projection are analogous.

Let F ,H ∶ D → E and G , I ∶ C → D be functors, and let η ∶ F ⇒ H and ρ ∶ G ⇒ I be
natural transformations. hey compose to form natural transformations ηG ∶ FG ⇒ HG and
Fρ ∶ FG ⇒ FI whose components at C ∈ C are (ηG)C = ηGC and (Fρ)C = F(ρC). he horizontal
composition η ∗ ρ ∶ FG ⇒ HI is given by the equal natural transformations ηI ○ Fρ and Hρ ○ ηG.
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2.1. CATEGORICAL AND DOMAIN-THEORETIC BACKGROUND AND NOTATION 5

We write �D and ⊺D for the initial and terminal objects, respectively, of a categoryD. When
�D and ⊺D are isomorphic, we say thatD has a zero object 0D. Wemay drop subscripts when no
ambiguity arises.

Given two functors F ∶ D → C and G ∶ E → C, the comma category F ↓ G [Rie16,
Exercise 1.3.vi] is given by the data:

● objects are triples (d , e , f ) where d is an object ofD, e is an object of E, and f ∶ Fd → Ge

is amorphism in C; and
● morphisms (d , e , f )→ (d′ , e′ , f ′) are pairs ofmorphisms (h, k) where h ∶ d → d′ inD
and k ∶ e → e′ in E are such that f ′ ○ Fh = Gk ○ f , i.e., such that the following diagram
commutes in C:

Fd Ge

Fd′ Ge′

f

Fh Gk

f
′

Given an object C of C, we write C ↓ G for KC ↓ G, where KC ∶ ●→ C is the constant functor onto
the object C. We also write F ↓ C for F ↓ idC.
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CHAPTER 3

CompletedWork

his chapter gives an overview of work that has been submitted for publication. An extended
version of this work is available as [Kav20].

3.1. ADomain Semantics for Polarized SILL

he polarized SILL programming language [PG15; TCP13] cohesively integrates functional
computation andmessage-passing concurrent computation. It is natural to ask: when are two SILL
programs equivalent? he answer is deeply intertwined with the semantics of the language: before
we can say that two pieces of syntax mean “the same thing”, wemust know themeaning of syntax.
We use our computational intuitions and expected equivalences to motivate a domain-theoretic
semantics.

Polarized SILL’s functional layer is the simply-typed λ-calculuswith a ûxed-point operator and
a call-by-value evaluation semantics. Encapsulated open processes are a base type. A hypothetical
judgment Ψ ⊩ M ∶ τ means the functional term M has functional type τ under the structural
context Ψ of functional variables x i ∶ τ i . hese judgments are inductively deûned by the rules
of ûg. 3.1.

he semantics of the functional layer is standard [Cro93; Gun92; Rey09; Ten95]. A functional
type τ denotes a Scott domain (an ω-algebraic bounded-complete pointed dcpo) JτK. A structural
context Ψ is interpreted as the Ψ-indexed product JΨK =∏x i∈ΨJτ iK. A functional term Ψ ⊩ M ∶ τ
denotes a continuous function JΨ ⊩ M ∶ τK ∶ JΨK→ JτK in the category ω-aBC of Scott domains
and continuous functions.

he process layer arises from a proofs-as-programs correspondence between the sequent
calculus formulation of intuitionistic linear logic and the session-typed π-calculus [CP10]. A
session type A describes a protocol for communicating over a channel. A process P provides a
service A on a channel c while using zero or more services A i on channels c i . he used services
form a linear context ∆ = c1 ∶ A1 , . . . , cn ∶ An . he process P can use values from the functional
layer. hese are abstracted by a structural context Ψ of functional variables. hese data are captured
by the hypothetical judgment Ψ ; ∆ ⊢ P ∶∶ c ∶ A. hese judgments are inductively deûned by the
rules of ûg. 3.2.

We cannot interpret processes Ψ ; ∆ ⊢ P ∶∶ c ∶ A in the same way as functional terms, that is,
as functions JΨK × J∆K → JAK. his is due to the fundamental diòerence between variables and
channel names. A variable x ∶ τ in the context Ψ stands for a value of type τ. A channel name in
∆, c ∶ A does not stand for a value, but rather for a channel whose bidirectional communications
obey its type. Informally, we interpret processes as continuous functions

(3) JΨ ; ∆ ⊢ P ∶∶ c ∶ AK ∶ JΨK→ [“inputOn(∆, c ∶ A)”→ “outputOn(∆, c ∶ A)”]

where we use the notation [⋅→ ⋅] for function spaces. his style of interpretation takes its roots in
the semantics given by Kahn [Kah74] for data�ow. Processes should bemonotone, for a longer
input preûx should result in no less output. hey should also be continuous, for a process should
not be able to observe an entire inûnitely-long communication before sending output.

To make this precise, we use the relationship between the polarity of a session type and the
direction of communication along a channel of that type [PG15]. Session types can be partitioned
as positive or negative. When looking at a judgment Ψ ; ∆ ⊢ P ∶∶ c ∶ A, we can imagine “positive

7
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Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A

Ψ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}

(I-{})
Ψ, x ∶ τ ⊩ x ∶ τ

(F-Var)
Ψ, x ∶ τ ⊩ M ∶ τ

Ψ ⊩ fix x .M ∶ τ
(F-Fix)

Ψ, x ∶ τ ⊩ M ∶ σ

Ψ ⊩ λx ∶ τ.M ∶ τ → σ
(F-Fun) Ψ ⊩ M ∶ τ → σ Ψ ⊩ N ∶ τ

Ψ ⊩ MN ∶ σ
(F-App)

Figure 3.1. Term formation in polarized SILL

Ψ ; a ∶ A ⊢ b ← a ∶∶ b ∶ A
(Fwd)

Ψ ; ∆1 ⊢ P ∶∶ a ∶ A Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C

Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C
(Cut)

Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1 (1R)
Ψ ; ∆ ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C (1L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A (↓R)
Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C (↓L)

Ψ ; ∆ ⊢ P ∶∶ a ∶

Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A (↑R)
Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ ↑A ⊢ send a shift; P ∶∶ c ∶ C (↑L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak (k ∈ L)

Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L

(⊕Rk)

Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C (∀l ∈ L)

Ψ ; ∆, a ∶ ⊕{l ∶ A l}l∈L
⊢ case a {l l ⇒ Pl}i∈I

∶∶ c ∶ C
(⊕L)

Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l (∀l ∈ L)

Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L
∶∶ a ∶ &{l ∶ A l}l∈L

(&R)
Ψ ; ∆, a ∶ Ak ⊢ P ∶∶ c ∶ C (k ∈ L)

Ψ ; ∆, a ∶ &{l ∶ A l}l∈L
⊢ a.k; P ∶∶ c ∶ C

(&Lk)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A
(⊗R∗)

Ψ ; ∆, a ∶ A, b ∶ B ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C
(⊗L)

Ψ ; ∆, b ∶ B ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A
(⊸R)

Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, b ∶ B, a ∶ B⊸ A ⊢ send a b; P ∶∶ c ∶ C
(⊸L)

Ψ ⊩ M ∶ τ Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A
(∧R)

Ψ, x ∶ τ ; ∆, a ∶ A ⊢ Q ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ∧ A ⊢ x ← input a;Q ∶∶ c ∶ C
(∧L)

Ψ, x ∶ τ ; ∆ ⊢ Q ∶∶ a ∶ A

Ψ ; ∆ ⊢ x ← input a;Q ∶∶ a ∶ τ ⊃ A
(⊃R)

Ψ ⊩ M ∶ τ Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ⊃ A ⊢ _← output a M; P ∶∶ c ∶ C
(⊃L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type+s
Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A

(ρ+RU)

Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type+s
Ψ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C (ρ+LU)

Ψ ; ∆ ⊢ P ∶∶ a ∶ ρα.A ⋅ ⊢ ρα.A type+s
Ψ ; ∆ ⊢ send a fold; P ∶∶ a ∶ [ρα.A/α]A

(ρ+RF)
Ψ ; ∆, a ∶ ρα.A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type+s

Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ fold← recv a; P ∶∶ c ∶ C
(ρ+LF)

Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type−s
Ψ ; ∆ ⊢ unfold← recv a; P ∶∶ a ∶ ρα.A (ρ−RU)

Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type−s
Ψ ; ∆, a ∶ ρα.A ⊢ send a unfold; P ∶∶ c ∶ C

(ρ−LU)

Ψ ; ∆ ⊢ P ∶∶ a ∶ ρα.A ⋅ ⊢ ρα.A type−s
Ψ ; ∆ ⊢ fold← recv a; P ∶∶ a ∶ [ρα.A/α]A

(ρ−RF)
Ψ ; ∆, a ∶ ρα.A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type−s
Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ send a fold; P ∶∶ c ∶ C

(ρ−LF)

Ψ ⊩ M ∶ {a ∶ A← a i ∶ A i} Ψ ; a ∶ A, ∆ ⊢ Q ∶∶ c ∶ C

Ψ ; a i ∶ A i , ∆ ⊢ a ← {M}← a i ;Q ∶∶ c ∶ C
(E-{})

Figure 3.2. Process formation in polarized SILL

information” as �owing le�-to-right and “negative information” as �owing right-to-le�. For
example, when the provided service A is positive, communication on c is sent by P; when A is
negative, it is received by P. As P executes, the type of a channel b ∶ B in ∆, c ∶ A evolves, sometimes
becoming a positive subphrase of B, sometimes a negative subphrase B. It is this evolution that
causes bidirectionality.

We use polarity to split a bidirectional communication into a pair of unidirectional communi-
cations. Given a protocol B, its positive aspect prescribes the le�-to-right communication, while
its negative aspect prescribes the right-to-le� communication. his leads to two interpretations,
each a Scott domain. he negative and positive aspects JBK− and JBK+ respectively contain the
“negative” and “positive” portions of the bidirectional communication. hese polarized also aspects
have strong computational motivations. he informal interpretation (3) is then made precise as
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Ξ ⊢ 1 type+s
(C1)

Ξ, α typep

s ⊢ α typep

s
(CVar)

Ξ, α typep

s ⊢ A typep

s

Ξ ⊢ ρα.A typep

s
(Cρ)

Ξ ⊢ A type−s
Ξ ⊢ ↓A type+s

(C↓)
Ξ ⊢ A type+s
Ξ ⊢ ↑A type−s

(C↑)
Ξ ⊢ A l type+s (∀l ∈ L)

Ξ ⊢ ⊕{l ∶ A l}l∈L
type+s

(C⊕)

Ξ ⊢ A l type−s (∀l ∈ L)

Ξ ⊢ &{l ∶ A l}l∈L
type−s

(C&)

Ξ ⊢ A type+s Ξ ⊢ B type+s
Ξ ⊢ A⊗ B type+s

(C⊗)

Ξ ⊢ A type+s Ξ ⊢ B type−s
Ξ ⊢ A⊸ B type−s

(C⊸)
τ typef σ typef

τ → σ typef
(T→)

τ typef Ξ ⊢ A type+s
Ξ ⊢ τ ∧ A type+s

(C∧)
τ typef Ξ ⊢ A type−s

Ξ ⊢ τ ⊃ A type−s
(C⊃)

⋅ ⊢ A i types (0 ≤ i ≤ n)

{a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} typef
(T{})

Figure 3.3. Type formation in polarized SILL

the continuous function

(4) JΨ ; ∆ ⊢ P ∶∶ c ∶ AK ∶ JΨK→ [J∆K+ × Jc ∶ AK− → J∆K− × Jc ∶ AK+]
in ω-aBC, where J∆Kp is the indexed product∏c

p

i

JA iKp for p ∈ {−,+}.
Process composition a ← P; Q arises from the proofs-as-processes interpretation of the (Cut)

rule of intuitionistic linear logic:
Ψ ; ∆1 ⊢ P ∶∶ a ∶ A Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C

Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C (Cut)

Operationally, the process Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C spawns two processes Ψ ; ∆1 ⊢ P ∶∶ a ∶ A
andΨ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C communicating along the shared channel a of type A. We follow prior
work on the semantics of data�ow [Kah74] and on the geometry of interactions [AJ94; AHS02] and
capture this feedback using a least ûxed point. Givenu ∈ JΨK and (δ+1 , δ+2 , c−) ∈ J∆1 , ∆2K+×Jc ∶ CK−,
we deûne

(5) JΨ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ CKu(δ+1 , δ+2 , c−) = (δ−1 , δ−2 , c+)
where δ−1 , δ−2 , a−, a+, and c+ form the least solution to the equations

(δ−1 , a+) = JΨ ; ∆1 ⊢ P ∶∶ a ∶ AKu(δ+1 , a−),
(δ−2 , a− , c+) = JΨ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ CKu(δ+2 , a+ , c−).

his ûxed point operation is an instance of the “trace operator” of traced monoidal cate-
gories [AHS02; CŞ90; JSV96]. A trace operator is a family of functions TrXA,B ∶ [A× X → B × X]→
[A→ B] natural in A and B, dinatural in X, and satisfying a collection of axioms. It captures the
“parallel composition plus hiding” operation considered byMilner [Mil80, pp. 20f.] and used by
Abramsky et al. [AGN96]. As a result, we can reason about process composition using general
identities for trace operators.

he judgment A typep
s means that A is a session type with polarity p. Open types are captured

using the hypothetical judgment Ξ ⊢ A typep
s , where Ξ = α1 typep1

s , . . . , αn typepn

s is a structural
context of polarized type variables. We abbreviate these hypothetical judgments as Ξ ⊢ A types or
Ξ ⊢ Awhen no ambiguity arises. he judgment τ typef means that τ is a functional type. hese
judgments are inductively deûned by the rules of ûg. 3.3.

We build on standard domain-theoretic techniques to interpret session types and functional
types. Hypothetical judgments Ξ ⊢ A denote locally continuous functors on a category of domains.
Recursive types are interpreted as solutions to domain equations. Let ω-aBC�! be the subcate-
gory of ω-aBC whosemorphisms are strict functions. We write JΞK for the Ξ-indexed product
∏α∈Ξ ω-aBC�!. he denotations JΞ ⊢ AK− and JΞ ⊢ AK+ are then locally continuous functors from
JΞK to ω-aBC�!.

Our semantics does not use ω-algebraicity or bounded-completeness and all occurrences of
ω-aBC and ω-aBC�! could respectively be replaced by DCPO� and DCPO�!. We mention the
additional structure only for informational purposes.
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To give the reader a �avour of the semantics, we give the semantic clauses for sending and
receiving channels (section 3.1.1), and the semantic clauses involving recursive types (section 3.1.2).

3.1.1. Sending and Receiving Channels. he provider send a b; P sends the channel b over
the channel a and continues as P. When the client b ← recv a; P receives a channel over a, it
binds it to the name b and continues as P. A service of type B ⊗ A sends a channel of type B and
continues as a service of type A.

We cannot directly observe a channel, only the communications that are sent over it. For
this reason, we treat communications of type A⊗ B as a pair of communications: one for the sent
channel and one for the continuation channel. his is analogous to the denotation of A⊗ B given
by Atkey [Atk17]. We account for the potential absence of communication by li�ing.

JΞ ⊢ A⊗ B typesK
− = JΞ ⊢ A typesK

− × JΞ ⊢ B typesK
−(6)

JΞ ⊢ A⊗ B typesK
+ = (JΞ ⊢ A typesK

+ × JΞ ⊢ B typesK
+)�(7)

To send the channel b over a, the provider send a b; P must relay the positive communication
from b+ to the JBK+-component of Ja ∶ B ⊗ AK+. It must also relay the negative information
on the JBK−-component of Ja ∶ B ⊗ AK− to b−. he continuation process P handles all other
communication.

(8)
JΨ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ AKu(δ+ , b+ , (a−B , a−A))
= (δ− , a−B , [(b+ , a+A)]) where JΨ ; ∆ ⊢ P ∶∶ a ∶ AKu(δ+ , a−A) = (δ− , a+A).

he client b ← recv a; Q blocks until it receives a channel on a. When it receives a positive com-
munication [(a+

B
, a+
A
)] on Ja ∶ B ⊗ AK+, it unpacks it into the two positive channels Ja ∶ A, b ∶ BK+

expected by Q. It then repacks the negative communication Ja ∶ A, b ∶ BK− produced by Q and
relays it over Ja ∶ B ⊗ AK−.

(9)

JΨ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; Q ∶∶ c ∶ CKu(δ+ , a+ , c−)
= stricta+ (λ(δ+ , a+ ∶ [(a+B , a+A)] , c−).(δ− , (b− , a−), c+))
where JΨ ; ∆, a ∶ A, b ∶ B ⊢ Q ∶∶ c ∶ CKu(δ+ , a+A, a+B , c−) = (δ− , a− , b− , c+).

We validate our semantic clauses via the following η-like property:

Proposition 1. For all Ψ ; ∆1 ⊢ P ∶∶ a ∶ A and Ψ ; ∆2 , a ∶ A, b ∶ B ⊢ Q ∶∶ c ∶ C, we have

a ← P; Q ≡ b ← (send a b; P) ; (b ← recv a; Q).

3.1.2. Recursive types. he variable rule (TVar) is interpreted by projection. We interpret
recursive types by the parametrized solution of a recursive domain equation. Every locally continu-
ous functor G ∶ ω-aBC → ω-aBC has a canonical ûxed point FIX(G) in ω-aBC. Given a locally
continuous functor F ∶ JΞK × ω-aBC�! → ω-aBC�!, themapping D ↦ FIX(F(D,−)) extends to a
locally continuous functor F† ∶ JΞK→ ω-aBC�! [AJ95, Proposition 5.2.7]. here exists a canonical
natural isomorphism Fold ∶ F ○ ⟨idJΞK , F†⟩⇒ F† with inverse Unfold. he rule (Cρ) denotes:

JΞ ⊢ ρα.A typesK
p = (JΞ, α types ⊢ A typesK

p)† (p ∈ {−,+})(10)

Processes can fold or unfold recursive types by sending or receiving fold or unfoldmessages.
he direction of communication is determined by the polarity of the recursive type. For example, a
process providing a positive recursive type sends the fold and unfoldmessages, while a process
providing a negative recursive type receives the messages. he semantics is given by pre- and
post-compositionwith the canonical natural isomorphisms Fold andUnfold for interpretation (10).
By the substitution property [Kav20, Proposition 16] and interpretation (10),

JΞ, α types ⊢ A typesK
p ○ ⟨idJΞK , (JΞ, α types ⊢ A typesK

p)†⟩ = JΞ ⊢ [ρα.A/α]A typesK
p .
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Let Foldp ∶ JΞ ⊢ [ρα.A/α]A typesKp ⇒ JΞ ⊢ ρα.AKp be the aforementioned natural isomorphism
and let Unfoldp be its inverse. We interpret (ρ+RU ) and (ρ+LU ) by:

JΨ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.AKu

= (id × (a+ ∶ Fold+)) ○ JΨ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]AKu ○ (id × (a− ∶ Unfold−))
(11)

JΨ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ CKu

= (id ×(a− ∶ Fold−)) ○ JΨ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ CKu ○ (id ×(a+ ∶ Unfold+))
(12)

he interpretations of the other six process rules for recursive types are analogous.

Proposition 2. If Ψ ; ∆1 ⊢ P ∶∶ a ∶ [ρα.A/α]A and Ψ ; ∆2 , a ∶ [ρα.A/α]A ⊢ Q ∶∶ c ∶ C, then
a ← P; Q ≡ a ← (send a unfold; P); (unfold← recv a;Q).



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09

CHAPTER 4

OngoingWork

4.1. 2-Categorical Analysis of Fixed Points of Functors

Functional programming languages o�en support recursive types. For example, in Standard
ML we can deûne the type of (unary) natural numbers as:
datatype nat = Zero

| Succ of nat

We interpret this deûnition as saying that a natural number is either zero (constructor Zero) or the
successor of some natural number n (constructed as Succ n). Semantically, nat denotes a domain
D satisfying the domain equation D ≅ (Zero ∶ ⊺) ⊎ (Succ ∶ D). Indeed, every inhabitant of nat
is either the tag Zero (accompanied by no other information), or an inhabitant of type nat tagged
by Succ. his domain D is a ûxed point of the functor Fnat(X) = (Zero ∶ ⊺) ⊎ (Succ ∶ X). More
generally, a recursive type denotes a ûxed point of the functor its deûnition induces. As a result,
giving the denotation of a recursive type corresponds to ûnding a ûxed point of a functor.

he techniques forûndingûxed points of functors on categories of domains arewellunderstood
[AJ95, Chapter 5; AL91, Chapter 10; Gie+03, § IV-7; Gun92, Chapter 10; GM89; SP82; Ten91,
Chapter 10]. Consider a locally continuous functor F ∶ D→ D on a suitable categoryD of domains.
To construct a domain X such that F(X) ≅ X, we begin by constructing an “ω-chain” Fω of the
iterates of F applied to the initial object:

�→ F�→ F
2�→ F

3�→ ⋯

Here, �→ F� is given by initiality, and Fn+1�→ Fn+2� is F(Fn�→ Fn+1�). If the colimit FIX(F)
of this diagram exists, then it is a ûxed point of F. We call the isomorphisms F(FIX(F))→ FIX(F)
and FIX(F)→ F(FIX(F)) witnessing the ûxed point fold and unfold, respectively.

he solution FIX(F) is canonical in the following sense. An F-algebra is a pair (A, α) where A
is a domain and α ∶ FA→ A is amorphism inD. An F-algebra homomorphism (A, α)→ (B, β)
is amorphism f ∶ A→ B inD such that the following diagram commutes:

(13)
FA A

FB B

α

F f f

β

hese F-algebras and their homomorphisms form a categoryDF . he solution FIX(F) is canonical
in the sense that (FIX(F), fold) is the initial F-algebra: given any other F-algebra (D, δ), there
exists a unique F-algebra homomorphism (FIX(F), fold)→ (D, δ).

Sometimes when programming we ûnd the need to deûne mutually-recursive data types.
Consider, for example, the types of even and odd natural numbers:
datatype even = Zero

| E of odd
and odd = O of even

his type deûnition captures the fact that an even number is either zero or the successor of an
odd number, and that an odd number is the successor of an even one. he types even and odd

13
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respectively denote solutions De and Do to the system of domain equations:

De ≅ (Zero ∶ ⊺) ⊎ (E ∶ Do)
Do ≅ (O ∶ De),

hese are the solutions to the system of equations:

Xe ≅ Feven(Xe , Xo)(14)
Xo ≅ Fodd(Xe , Xo)(15)

where Feven and Fodd are the functors:

Feven(Xe , Xo) = (Zero ∶ ⊺) ⊎ (E ∶ Xo),
Fodd(Xe , Xo) = (O ∶ Xe).

We can use Bekič’s rule [Bek84, § 2] to solve this system of equations. We think of eq. (14) as a
family of equations parametrized by Xo. Ifwe could solve for Xe, thenwewould get a parametrized
family of solutions F†even(Xo) such that

(16) F
†
even(Xo) ≅ Feven(F†even(Xo), Xo)

for all domains Xo. Substituting this for Xe in eq. (15) gives the domain equation

Xo ≅ Fodd(F†even(Xo), Xo).
Solving for Xo gives the solution Do. Substituting Do for Xo in eq. (16), we see that De = F†even(Do)
is the other part of the solution.

he above example motivates techniques to solve parametrized domain equations. hese
techniques are also well-understood and are summarized by proposition 3. Given a categoryD of
domains, we writeD�! for the subcategory of strict morphisms.

Proposition 3 ([AJ95, Proposition 5.2.7]). LetD and E be categories of pointed domains closed
under bilimits. Let F ∶ D�! × E�! → E�! be a locally continuous functor and write FD for F(D, ⋅).
hen the following deûnes a locally-continuous functor F† from D�! to E�!:

● On objects : D ↦ FIX(FD),
● on morphisms : ( f ∶ D → D′)↦ ⊔↑n∈N e′n ○ fn ○ e

p

n ,

where e ∶ Fω
D
→ FIX(FD) and e′ ∶ Fω

D′ → FIX(FD′) are the colimiting cones, and where the sequence

( fn)n∈N is deûned recursively by f0 = id�, fn+1 = F( fn , f ).

hough proposition 3 gives an explicit “recipe” for themapping F ↦ F†, it says nothing about
the nature of this mapping. Is this mapping functorial? Do F and F† satisfy any of the identities of
ûxed-point theory, e.g., the le� zero identity or the parameter identities of Bloom and Ésik [BÉ96]?
In what sense is the family of solutions F† canonical? Our semantics of recursive session types
depends crucially on the answers to these questions and others.

4.1.1. Background and RelatedWork. O-categories [SP82] generalize categories of domains
to provide just the structure required to ûnd solutions to domain equations. We refer the reader to
chapter 2 for their deûnition.

Let ω be the category whose objects are natural numbers, and where there exists amorphism
m → n if and only if m ≤ n. An ω-chain is a ω-shaped diagram.

Given an O-category K and a cocone µ ∶ Φ → A in Ke on an ω-chain Φ, we say µ is an
O-colimit [SP82, Deûnition 7] of Φ whenever (µn ○ µ

p

n)n∈N is an ascending chain in [A→ A] and
⊔↑n∈N µn ○ µ

p

n = idA.
An O-category K has locally determined ω-colimits of embeddings [SP82, Deûnition 8]

if for all ω-chains Φ ∶ ω → Ke and cocones µ ∶ Φ → A in Ke , µ is colimiting in Ke if and only if µ is
an O-colimit. Dually, a cone µ ∶ A→ Φ in Kp on an ωop-chain Φ is an O-limit [SP82, Deûnition 7]
of Φ whenever (µp

n ○ µn)n∈N is an ascending chain in [A→ A] and ⊔↑n∈N µ
p

n ○ µn = idA.
Our interest in O-colimits is due to:
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Proposition 4 ([SP82, Propositions A and D]). Let K be an O-category, Φ an ω-chain in Ke ,

and µ ∶ Φ → A a cocone in K. he cocone µ is colimiting in K if and only if it is an O-colimit. If µ is

colimiting in K, then it is also colimiting in Ke .

Proposition 4 and its dual imply the limit-colimit-coincidence.

Proposition 5 (Limit-colimit coincidence [SP82,heorem 2]). Let K be an O-category, Φ an

ω-chain in Ke , and ϕ ∶ Φ → A a cocone in K. Let Φp ∶ ωop → Kp be ωop-chain obtained by taking

the projection of each embedding. he following are equivalent:

(1) ϕ is an ω-colimit of Φ in K,
(2) ϕ is an O-colimit of Φ,
(3) ϕp is an ωop-limit of Φp in K, and
(4) ϕp is an O-limit of ΦP .

Bloom and Ésik [BÉ95] study the interaction between the Conway identities and external
dagger operators on 2-categories. heir deûnition of external dagger operator [BÉ95, Deûnition 2.6]
concerns only horizontal morphisms. hey use initial algebras to deûne an external dagger operator
on horizontal morphisms in 2-categories. Indeed, given a horizontal morphism F ∶ E ×D → E,
they take F† ∶ D → E to be the carrier of the initial algebra of the horizontal morphism H from
proposition 11 below.

4.1.2. Contributions. I propose continuing to explore the 2-categorical structure [Mac98,
§ 10.3] of ûxed points of functors on O-categories. his section contains some answers to the
questions following proposition 3. hese answers lead to new questions, which we also pose.

We begin by statingwithout proof that themapping F ↦ F† is functorial. Given anO-category
K and an object K ofK, let LinkK(K) be the full subcategory of K ↓ [K l.c.Ð→ K] spanned by objects
(ϕ, F) where ϕK ∶ K → FK is an embedding. Objects (ϕ, F) of this category are called “links”
because they form the start of an ω-chain.

Proposition 6 (Functoriality of FIX). Let K be an O-category and assume Ke is ω-cocomplete.

Let K be an object of K. here exists a functor FIXK ∶ LinkK(K)→ K where FIXK(ϕ, F) is a ûxed

point of F. IfK has locally determined ω-colimits of embeddings, then this functor is locally continuous.

If η ∶ (ϕ, F)→ (γ,G) lies in Ke , then so does FIXKη.

Question 1. In proposition 6, we privilege the “objects axis” over the “functor axis”. Indeed,

FIXK is a functor out of a category LinkK(K) for some object K of K. Can we reformulate the

statement so that FIX is a functor out of some category LinkK that does not depend on a particular

choice of object K? he categories LinkK(K) are indexed by objects K of K. Is there a ûbrational

structure lurking in the background?

Proposition 7 states that folding and unfolding ûxed points of functors F is natural in F. To
do so, we ûrst explain in lemma 1 how unfolding a ûxed point is a functorial operation. Given an
object (ϕ, F) of LinkK(K), let (ϕ, F)ω be the ω-chain generated by iteratively applying F to the
morphism ϕ ∶ K → FK.

Lemma 1. LetK be anO-category with locally determined ω-colimits of embeddings, and assume

Ke is ω-cocomplete. Let K be an object of K. he following deûnes a functor UNFK ∶ LinkK(K)→ K.

● On objects: UNFK(ϕ, F) = F(FIXK(ϕ, F)),
● on morphisms: UNFK(ρ ∶ (ϕ, F) → (γ,G)) = ⊔↑n∈N Gνn ○ ρω

n+1 ○ (Fµn)p, where µ ∶
(ϕ, F)ω → FIXK(ϕ, F) and ν ∶ (γ,G)ω → FIXK(γ,G) are the colimiting cones.

Proposition 7. Let K be an O-category with locally determined ω-colimits of embeddings,

and assume Ke is ω-cocomplete. Let K be an object of K. hen there exists a natural isomorphism

unfold ∶ FIXK → UNFK with inverse fold ∶ UNFK → FIXK . hey are explicitly given as follows. Let
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(ϕ, F) be an object of LinkK(K), and let µ ∶ (ϕ, F)ω → FIXK(ϕ, F) be the colimiting cone. he

components are:

fold(ϕ ,F) =⊔↑
n∈N

µn+1 ○ F(µn)p ∶ F(FIXK(ϕ, F))→ FIXK(ϕ, F)

unfold(ϕ ,F) =⊔↑
n∈N

F(µn) ○ µ
p

n+1 ∶ FIXK(ϕ, F)→ F(FIXK(ϕ, F)).

Naturality means that for any ρ ∶ (ϕ, F)→ (γ,G), the following squares commutes in K:

FIXK(ϕ, F)
unfold(ϕ ,F)

//

FIXK ρ

��

F(FIXK(ϕ, F))

UNFK ρ

��

FIXK(γ,G)
unfold(γ ,G)

// G(FIXK(γ,G)),

FIXK(ϕ, F)

FIXK ρ

��

F(FIXK(ϕ, F))

UNFK ρ

��

fold(ϕ ,F)
oo

FIXK(γ,G) G(FIXK(γ,G)).
fold(γ ,G)
oo

Our original interest was in solutions to parametrized solutions to domain equations. Proposi-
tion 3 requires that the categories of domains have strict morphisms. We generalize this concept to
O-categories. An O-category K has strict morphisms if it has a zero object 0K and the limiting
cone 0 ∶ 0K → idK lies in Ke . his deûnition captures just the structure required and allows us to
prove a variety of expected properties, e.g., proposition 8.

Proposition 8. If K is an O-category with strict morphisms, then for all objects A and B, the

zero morphism 0AB ∶ A→ B is the least element of [A→ B].

Question 2. Fiore [Fio94, Deûnition 8.5.10] deûnes strict morphisms between complete objects.

How are these deûnitions related?

An O-category K supports canonical fixed points if
(1) it has strict morphisms,
(2) locally determined ω-colimits of embeddings, and
(3) Ke is ω-cocomplete.

In this case, we write FIX for FIX�.
Proposition 9 generalizes proposition 3. It states that ûnding solutions to parametrized domain

equations is functorial.

Proposition 9. Let E and D beO-categories. Assume E supports canonical ûxed points. he

following composition is a well-deûned functor:

(⋅)† = [idD → FIX] ○ Λ ∶ [D × E l.c.Ð→ E]→ [D l.c.Ð→ E].

Explicitly, F†D = FIX(FD) is the canonical ûxed point of the partial application of F to the object D.

When E, D, and F satisfy the hypotheses of proposition 3, then F† is the locally continuous functor

given by that proposition.

his operation satisûes a weak ûxed-point identity (diagram 17). his weak ûxed-point identity
generalizes the ûxed-point identity [BÉ96, p. 10] to the case of functors, where the two functors are
not equal but only naturally isomorphic:

(17)
D D × E

E

⟨id,F†⟩

F
†

F
≅

his identity is given by proposition 10:
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Proposition 10 (Weak ûxed point identity). Let E and D beO-categories. Assume E supports

canonical ûxed points. Let F ∶ E × D → E be a locally continuous functor. here exist natural

transformations

Unfold ∶ F† → F ○ ⟨idD , F†⟩
Fold ∶ F ○ ⟨idD , F†⟩→ F

†

that form a natural isomorphism F† ≅ F ○ ⟨id, F†⟩. Let D be an object of D. he D-components for

these natural transformations are given by

UnfoldD = unfold(�,FD) ∶ FIX(FD)→ UNF(FD),
FoldD = fold(�,FD) ∶ UNF(FD)→ FIX(FD),

where unfold and fold are the natural isomorphisms given by proposition 7.

he parametrized solutions given by proposition 9 are canonical in the following sense:

Proposition 11. Let E and D beO-categories, and assume E supports canonical ûxed points.

Let F ∶ E×D→ E be a locally continuous functor. Let F† ∶ D→ E be given by proposition 9, and Fold
and Unfold by proposition 10. hen (F† ,Fold) and (F† ,Unfold) are respectively the initial algebra

and terminal coalgebra for the functor

H = F ○ ⟨−, idD⟩ ∶ [D
l.c.Ð→ E]→ [D l.c.Ð→ E].

(1) Given any other H-algebra (A, α), the mediating morphism ϕ ∶ F† → A is a natu-

ral pointwise-embedding. he component ϕD is the unique FD-algebra homomorphism

(F†D,FoldD)→ (GD, γD).
(2) Given any other H-coalgebra (Γ, γ), the mediating morphism ρ ∶ Γ → F† is a natural

pointwise-projection. he component ρD is the unique FD-coalgebra homomorphism

(GD, γD)→ (F†D,UnfoldD).
(3) Given an H-algebra (A, α) where α is a natural embedding, (A, αp) is an H-coalgebra and

(ϕ, ρ) form a natural e-p-pair.

We have suggestively used the dagger notation F† of Bloom and Ésik [BÉ95; BÉ96] to describe
parametrized ûxed points. Bloom and Ésik study many useful identities that dagger operations
can satisfy. Which identities does the dagger operator from proposition 9 satisfy? he cartesian
Conway identities [BÉ96, Deûnition 3.3; BÉ95, § 3] axiomatize iteration theories and imply many
other identities. Does proposition 9 satisfy the cartesian Conway identities?

Our interest in these identities is not just of a theoretical nature: they are very practical. For
example, to show that our interpretations of types asnatural transformations (see section 4.2) respect
the substitution property, we must show that proposition 9 satisûes variants of the “parameter
identity” [BÉ96, p. 8]. In particular, to show that the natural transformations for the recursive types
satisfy the substitution property, we rely on corollary 3. Corollary 1 tells us that (⋅)† is natural inD.

Corollary 1 (Parameter identity). Let C, D, and E be O-categories. Assume E supports

canonical ûxed points. Let F ∶ D × E → E and G ∶ C → D be locally continuous functors. hen

(F ○ (G × idE))† = F† ○G.

he weak ûxed point identity and the parameter identity interact as follows:

Corollary 2 (Parameter identity II). Let C, D, and E be O-categories. Assume E supports

canonical ûxed points. Let F ∶ D × E → E and G ∶ C → D be locally continuous functors, and let

W = (F ○ (G × idE)). Let FoldF and FoldW
be the natural isomorphisms given by proposition 10.

hen FoldW = FoldFG and UnfoldW = UnfoldFG.

Corollary 3 (Parameter identity III). Let C, D, and E beO-categories. Assume E supports

canonical ûxed points. Let F , I ∶ D × E → E and G , J ∶ C → D be locally continuous functors,

and let W = (F ○ (G × idE)) and V = (I ○ (J × idE)). Let η ∶ F → G and ϕ ∶ G → J. hen

(η ∗ ϕ)† = η† ∗ ϕ ∶W† → V †.



[git] • master @ v1.0-0-gce1597b • March 19, 2020 17:10:09

18 4. ONGOING WORK

Corollary 4 is an instance of what Bloom and Ésik [BÉ96, p. 10] call the “le� zero identity”.

Corollary 4 (Le� zero identity). Let D and E beO-categories. Assume E supports canonical

ûxed points and let F ∶ D→ E be a locally continuous functor. hen

(E ×D πÐ→ D
FÐ→ E)

†

= D FÐ→ E.

We conclude by considering size issues. We frequently use functor categories [C→ D] where
C andD are categories of domains. he categories of domains that we care about are never small,
but deûnitions of [C→ D] typically require that C be small. We can use a hierarchy of universes as
described in [Sch72, § 3.2] to address these issues. We conjecture that we could alternatively use a
single universe, as described in [Mac69b].

4.2. Canonical Interpretations of Session Types and Junk-Freedom

In section 3.1, we gave polarized interpretations JAK− and JAK+ to each session type A. A pair
(a− , a+) ∈ JAK− × JAK+ is meant to capture a bidirectional communication on a channel of type A.
However, there aremany such pairs that do not capture an actual bidirectional communication.
To address this issue, we introduce a third interpretation JAK, the canonical interpretation of A,
that captures entire bidirectional communications in a single domain. his canonical interpretation
is deûned so that JAK is a subdomain of JAK− × JAK+. he pairs (a− , a+) that capture bidirectional
communications are then those in the image of JAK.

To relate the interpretations of open types, we generalize from a single embedding-projection
pair to natural embeddings. We deûne two new denotations LΞ ⊢ A types M− and LΞ ⊢ A types M+

that are natural transformations from the canonical interpretations to the polarized aspects. hey
satisfy proposition 12, which intuitively tells us that the domain of bidirectional communications
“lives in” the product of the polarized aspects (unidirectional communications).

Proposition 12. If Ξ ⊢ A types does not use (Cρ), then there exists a pair of natural transfor-

mations LΞ ⊢ A types M− and LΞ ⊢ A types M+ such that

JΞ ⊢ A typesK
⟨L Ξ⊢A types M− ,L Ξ⊢A types M+⟩
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ JΞ ⊢ A typesK

− × JΞ ⊢ A typesK
+

is a natural embedding.

For order-theoretic reasons, proposition 12 requires us to restrict the interpretations of types
from functors on ω-aBC�! to functors on its subcategory ofmeet-homomorphisms. It is unclear
whether proposition 12 holds for all Ξ ⊢ A types, i.e., whether it also holds for recursive types.

I expect that this ongoing work will be key to eliminating “semantic junk” so that I can
show soundness and adequacy ofmy denotational semantics relative to standard substructural
operational semantics for SILL-like languages (see section 5.1 below). In particular, we would like
the interpretations of processes to not produce semantic junk. More precisely, we would like a
process to map the unidirectional portion of a bidirectional communication to the corresponding
unidirectional portion in the opposite direction. To make this explicit, set

I(a1 ∶ A1 , . . . , an ∶ An ⊢ a0 ∶ A0) = (
n

∏
i=1

(a+i ∶ LA i M+)) × (a−0 ∶ LA0 M−)

O(a1 ∶ A1 , . . . , an ∶ An ⊢ a0 ∶ A0) = (
n

∏
i=1

(a−i ∶ LA i M−)) × (a+0 ∶ LA0 M+) .

As an initial deûnition, we could say that a function p ∈ J∆ ⊢ a ∶ AK is “junk-free” if for all
x ∈ dom(p), (x , p(x)) ∈ im(⟨I(∆ ⊢ a ∶ A),O(∆ ⊢ a ∶ A)⟩). his captures the above intuitions,
but is too naïve. Indeed, if p is the denotation of a process, that process could get stuck and
not consume its entire input when producing its output. he following deûnition addresses this
possibility. A function p ∈ J∆ ⊢ a ∶ AK is junk-free if for all x ∈ dom(p), there exists a y ⊑ x such
that p(y) = p(x) and (y, p(y)) ∈ im(⟨I(∆ ⊢ a ∶ A),O(∆ ⊢ a ∶ A)⟩). We say that p is adjointly
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junk-free if these y are determined by a lower adjoint←Ðp ⊣ p, i.e., if p has a lower adjoint←Ðp such
that for all x ∈ dom(p), ⟨←Ðp ○ p, p⟩(x) ∈ im(⟨I(∆ ⊢ a ∶ A),O(∆ ⊢ a ∶ A)⟩). (Recall from [AJ95,
Proposition 3.1.12] that if←Ðp ⊣ p, then p ○←Ðp ○ p = p.)

Conjecture 1 (Junk-freedom). We restrict our attention to the fragment without recursive

types. For all processes Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0 and environments u ∈ JΨK,
JΨ ; ∆ ⊢ P ∶∶ a ∶ AKu is adjointly junk-free.

Conjecture 1 so far holds for the fragment containing (Fwd) (with a diòerent junk-free inter-
pretation of the rule), (Cut), unit, and shi�s.
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CHAPTER 5

Core ProposedWork

his chapter proposes work that should form the remainder of the core contributions ofmy
thesis.

5.1. Soundness and Adequacy

he operational behaviour of session-typed languages is typically speciûed by a substructural
operational semantics [Sim12], a form ofmultiset rewriting [CS09]. hese operational semantics
motivated the denotational semantics in section 3.1. It is incumbent upon us to show that the
denotational semantics faithfully re�ects the operational semantics of our languages. To make
this formal, we need to show that our denotational semantics is sound and adequate relative to
an appropriate operational notion of observation. By soundness, wemean that observationally
equivalent processes should be denotationally equivalent. By adequacy,wemean that denotationally
equivalent processes are observationally equivalent.

5.1.1. Operational notions of observation. Our deûnitions of soundness and adequacy pre-
suppose that we have ûxed an operational notion of observation. We brie�y consider existing
operational notions of observation.

Morris-style contextual equivalence [Mor68] is not ameaningful notion of equivalence in our
setting. his is because we care primarily about how a process interacts with its environment, i.e.,
themessages it sends and receives, rather than whether or not it terminates. To illustrate this, let
B = ρβ. ⊕ {l ∶ β} and consider the recursive process cp:
x : B |- cp :: y : B
y <- cp <- x = case x { l => y.l; y <- cp <- x }
he right hand side of the second line is the body of the process cp, while the le� hand side binds
the channel names y and x in the body. We use the syntactic sugar y <- cp <-x for the tail call
t <- cp <- x; y <- t. We will use repeatedly use this syntactic sugar in the examples below.
Compare cp to the forwarding process:
x : B |- y <- x :: y : B
Under standard operational semantics, the forwarding process immediately terminates a�er globally
identifying the channels x and y, while the process cp never terminates. However, they have
identical interactions with their environments: whenever the label l arrives on x, it is immediately
forwarded to y.

Pérez et al. [Pér+14] introduced linear logical relations for session-typed processes. Toninho
[Ton15, Chapter 6] gives an account for session-typed processes with corecursion and coinductive
session types. Neither account supports general recursion. To address this, Toninho [Ton15,
pp. 137f.] proposes using step-indexed logical relations, but concedes that this approach is technically
challenging.

Wadler [Wad14] gave a computational interpretation to classical linear logic called classical
processes (CP). hough CP had a reduction relation semantics, it did not have an obvious notion
of observation. One diõculty in giving CP processes such a notion is that communication in CP
is synchronous, and CP processes block if they try to communicate along unconnected channels.
However, if you give a CP process a partner to communicate with, then you cannot observe their
communications. To address these issues, Atkey [Atk17] introduced observed communications

21
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semantics. Atkey’s solution was to deûne a new operational semantics for CP in which an exter-
nal observer can see the messages exchanged on channels. He then showed that his relational
denotational semantics was sound and adequate relative to his observed communication semantics.

5.1.2. Standard operational semantics. As described above, operational semantics for SILL-
based languages are given by substructural operational semantics. hese substructural operational
semantics operate on a collection of linear (ephemeral) and persistent judgments, called a con-
figuration. he linear judgment proc(c, P) describes a process P oòering a service on channel
c. he linear judgment msg(c,m) describes amessage m on channel c. he persistent judgment
eval(M , v) captures that the functional term M evaluates to the value v.

To run a process ⋅ ; ∆ ⊢ P ∶∶ c ∶ A, we ûrst form the initial configuration whose sole
judgments are proc(c, P), and eval(M , v) for all functional terms M and v such that M evaluates
to v. Transitions are given by rules of the form C Ð→ C′, where C and C′ are conûgurations. Given a
conûguration C ,D, executing the aforementioned rule produces the conûguration C′ ,D.

In our asynchronous setting, processes can sendmessages even if they have no communication
partner. For example, the close c process sends the closemessage ∗ on c and terminates. his is
captured by the rule:

(18) proc(c, close c)Ð→ msg(c, ∗).

Its client wait c; P waits until it receives a closemessage and then continues with the continuation
process P:

(19) msg(c, ∗), proc(d ,wait c; P)Ð→ proc(d , P).

Messages sent on diòerent channels are not ordered. However, messages sent on the same
channel must be received in the order in which they were sent. To capture channels’ queue-like
structure, we use a fresh continuation channel for subsequent communication. his is captured
by messages of the form m; c ← d, where m is the data sent on c and d is the channel on which
future communications will be sent. As a result, we can imagine the conûguration msg(c,m1; c ←
d),msg(d ,m2; d ← e),msg(e ,m3; e ← f ) as encoding the queue ofmessages m1 ,m2 ,m3, where
m1 was sent ûrst.

We illustrate this pattern with the rules for internal choice. Here, we send a label l j on channel
c, and communication continues on channel d:

(20) proc(c, c.l j ; P),Ð→ msg(c, c.l j ; c ← d), proc(d , [d/c]P) (d fresh)

Receiving a label message causes a case process to select the corresponding branch. We update the
branch with the new channel name for the continuation.

(21) msg(c, c.l j ; c ← d), proc(b, case c (l i ⇒ Pi)i∈I)Ð→ proc(b, [d/c]Pj)

In the asynchronous setting, the cut rule spawns two new processes that communicate along
a fresh channel. It does not depend on the structure of the composed processes (cf. (1) in the
synchronous setting of chapter 2).

(22) proc(c, a ← P; Q)Ð→ proc(d , [d/a]P), proc(c, d/a]Q) (d fresh)

Sending and receiving channels is captured by substitution of channel names and poses no
diõculty:

(23) proc(a, send a b; P)Ð→ proc(d , [d/a]P),msg(a, send a b; a ← d) (d fresh)

(24) msg(a, send a b; a ← d), proc(c, e ← recv a; Q)Ð→ proc(c, [b, d/e , a]Q)
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5.1.3. A conjectural sketch of our approach. We give an operational notion of observation
to polarized SILL. Because our ultimate goal is to relate our denotational semantics to existing
operational semantics,wemust deûne an operational notion observation that faithfully captures the
existing operational semantics. To do so, we deûne a variant of the above substructural operational
semantics. We then use the ideas underlying Atkey’s [Atk17] observed communication semantics
to extract an observation from an execution trace for a process.

To simplify the deûnition of observations, wemodify the syntax for processes to keep track of
types when they cannot be easily inferred. For example, the (Cut) rule becomes:

Ψ ; ∆1 ⊢ P ∶∶ a ∶ A Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C
Ψ ; ∆1 , ∆2 ⊢ a ∶ A← P; Q ∶∶ c ∶ C (Cut)

he transition rules are as in the usual substructural operational semantics, except that we
track channels’ types. he persistent judgment type(c ∶ A) means that the channel c has type A.
he transition steps then become:

(25) proc(c, c.l j ; P), type(c ∶ ⊕{l i ∶ A i})Ð→
msg(c, c.l j ; c ← d), proc(d , [d/c]P), type(d ∶ A j) (d fresh)

(26) proc(c, a ∶ A← P; Q)Ð→ proc(d , [d/a]P), proc(c, [d/a]Q), type(d ∶ A) (d fresh)

(27) proc(a, send a b; P), type(a ∶ A⊗ B)Ð→
proc(d , [d/a]P),msg(a, send a b; a ← d), type(d ∶ B) (d fresh)

We allow for multiple transition steps to be taken in parallel in an execution. To ensure the
following deûnition as an invariant when deûning execution traces to ensure that fresh channels
names do not clash. We say that a conûguration C is agreeable if

(1) themultiset C is actually a set, and
(2) for each channel name c, if type(c ∶ A) and type(c ∶ B) appear in C, then A = B.
Let C0 , . . . , Cn , Cn+1 and C′0 , . . . , C′n , Cn+1 be two agreeable conûgurations. Assume that Ci Ð→ C′i

for 0 ≤ i ≤ n. An execution step is a transition

C0 , . . . , Cn , Cn+1 Ð→e C′0 , . . . , C′n , Cn+1

We call C0 , . . . , Cn the active subconûgurations and Cn+1 the stationary subconûguration. We
typically write S for stationary subconûgurations.

An execution trace {Ci}i is a (potentially empty or inûnite) maximal sequence of execution
steps C0 Ð→e C1 Ð→e ⋯. We identify execution traces up-to renaming of freshly-generated channels.
Note that the deûnition of execution step builds agreeability into each of the conûgurations. We
write Si for the stationary subconûguration in the execution step Ci Ð→e Ci+1.

An execution trace {Ci}i is fair if for all i, wheneverD is a subconûguration of Si andD Ð→ E ,
there exists a k > i such that

● Ck = D0 , . . . ,Dn ,Sk for n ≥ 0, and
● D isD j for some 0 ≤ j ≤ n.

Fairness ensures that all processes that can take an action eventually do so.
he initial configuration of a process ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 is the conûguration

proc(c, P), type(c0 ∶ A0), . . . , type(cn ∶ An), along with all valid eval(M , v) judgments. A fair
execution of ⋅ ; ∆ ⊢ P ∶∶ c ∶ A is a fair execution trace from the process’s initial conûguration.

5.1.3.1. Observations from executions. We colour-code themodes of judgments, where inputs
to a judgment are in blue and outputs are in red.

Consider an execution T = {Ci}i . Let T be the set-theoretic union of the Ci , that is, x ∈ T if
and only if x ∈ Ci for some i.

Write T ⊢ c ∶ A if type(c ∶ A) appears in Ci for some i. his is conjectured to be a well-deûned
function.
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We use the judgment T ↝ v / c to mean that we observed a communication v on channel c
during T . his judgment is coinductively deûned by the following rules.

Subject to the side condition that msg(c,m) is not in T , we have the axiom

T ↝ � / c

It tells us that we observed no communications on the live channel c. We observe closemessages
directly:

msg(c, ∗) ∈ T
T ↝ ∗ / c

We observe label transmission as labelling observations on the continuation channel:

msg(c, c.l ; c ← d) ∈ T T ↝ v / d
T ↝ (l , v) / c

We observe forwarding as copying between channels:

msg(c, c ← d) ∈ T T ↝ v / d
T ↝ v / c

We observe channel transmission as pairing:

msg(c, send c a; c ← d) ∈ T T ↝ u / a T ↝ v / d
T ↝ (u, v) / c

Conjecture 2. he judgment T ↝ v / c deûnes a function from executions and channel names

to communications. Explicitly, if T ↝ v / c and T ↝ w / c, then v = w.

We write T ↝ v ∈ A / c whenever T ⊢ c ∶ A and T ↝ v / c. In this case, we expect v to live in
JAK, where JAK is the canonical interpretation of A described in section 4.2.

Conjecture 3. Let T be a fair execution of ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. For all

0 ≤ i ≤ n, T ↝ v i ∈ A i / c i for some unique v i ∈ JA iK.

he following conjecture captures the con�uence property typically enjoyed by SILL-style
languages:

Conjecture 4. Let T and R be a fair executions of ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. For all

0 ≤ i ≤ n, if T ↝ v i ∈ A i / c i and R ↝ w i ∈ A i / c i , then v i = w i .

We use conjecture 3 to deûne the observation JTK induced by a fair execution T of a pro-
cess ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. It is the tuple (c i ∶ v i)0≤i≤n ∈ Jc0 ∶ A0 , . . . , cn ∶ AnK
where T ↝ v i / c i for 0 ≤ i ≤ n. By conjecture 4, we have H⋅ ; ∆ ⊢ P ∶∶ c ∶ AI = JTK for all
fair executions T of P. Every process has a fair execution F . he operational observation
H⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0I of ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 is then the element of
Jc0 ∶ A0 , . . . , cn ∶ AnK given by

H⋅ ; ∆ ⊢ P ∶∶ c ∶ AI = JFK.
5.1.3.2. Relating operational observations and denotations. We relate the operational and de-

notational sides using conjectures 5 and 6. Conjecture 5 tells us that if we observe a bidirectional
communication on the operational side, we can split it up into unidirectional communications
that are related by the denotation of the process.

Conjecture 5. Assume P is a process satisfying ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. Let

(c i ∶ v i)0≤i≤n ∈ H⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0I be arbitrary. Let v
p

i
= LA i Mp(v i) for p ∈

{−,+} be the polarized aspects of v i . hen

J⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0K�(c+1 ∶ v+1 , . . . , c+n ∶ v+n , c−0 ∶ v−0 )
= (c−1 ∶ v−1 , . . . , c−n ∶ v−n , c+0 ∶ v+0 ).
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Conjecture 6 tells us that if the denotation of a process produces an output in the absence of
input, then this input/output can be reassembled into a bidirectional communications that can
be observed operationally. We write mergeA i

for the projection associated with the embedding
⟨LA i M− , LA i M+⟩ from proposition 12.

Conjecture 6. If ⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 and

J⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0K�(c+1 ∶ �, . . . , c+n ∶ �, c−0 ∶ �)
= (c−1 ∶ v−1 , . . . , c−n ∶ v−n , c+0 ∶ v+0 ),

then

( ∏
0≤i≤n

mergeA i
)(c−i ∶ v−i , c+i ∶ v+i )0≤i≤n ∈ H⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0I.

It might be interesting to generalize conjecture 6 to arbitrary input. To do so, we would need
to translate input from the environment on the denotational side to message judgments in the
initial conûguration on the operational side.

5.1.3.3. Observational equivalence. An observation context ⋅ ; ∆ ⊢ C[⋅]∆
′

a∶A ∶∶ c ∶ C is a
context derived using the process typing rules of ûg. 3.2, plus exactly one instance of the axiom

⋅ ; ∆′ ⊢ [⋅]∆
′
a∶A ∶∶ a ∶ A

(Hole)

Given a context ⋅ ; ∆ ⊢ C[⋅]∆
′
a∶A ∶∶ c ∶ C and a process ⋅ ; ∆′ ⊢ P ∶∶ a ∶ A, we let C[P] be the result of

“plugging” P into the hole, that is, of replacing the axiom (Hole) by the derivation ∆′ ⊢ P ∶∶ a ∶ A
in the derivation ∆ ⊢ C[⋅]∆

′
a∶A ∶∶ c ∶ C.

We say that processes ⋅ ; ∆ ⊢ P ∶∶ c ∶ C and ⋅ ; ∆ ⊢ Q ∶∶ c ∶ C are observationally
equivalent, P ≈ Q, if H⋅ ; ∆′ ⊢ C[P] ∶∶ b ∶ BI = H⋅ ; ∆′ ⊢ C[Q] ∶∶ b ∶ BI for all observation contexts
⋅ ; ∆′ ⊢ C[⋅]∆

c∶C ∶∶ b ∶ B.
5.1.3.4. Statements of soundness and adequacy. Processes Ψ ; ∆ ⊢ P ∶∶ c ∶ C and Ψ ; ∆ ⊢ Q ∶∶

c ∶ C are denotationally equivalent, P ≡ Q, if JΨ ; ∆ ⊢ P ∶∶ c ∶ CK = JΨ ; ∆ ⊢ Q ∶∶ c ∶ CK.

Conjecture 7 (Soundness). For all processes ⋅ ; ∆ ⊢ P ∶∶ c ∶ A and ⋅ ; ∆ ⊢ Q ∶∶ c ∶ A, if P ≈ Q,

then P ≡ Q.

Conjecture 8 (Adequacy). For all processes ⋅ ; ∆ ⊢ P ∶∶ c ∶ A and ⋅ ; ∆ ⊢ Q ∶∶ c ∶ A, if P ≡ Q,

then P ≈ Q.

5.2. Domain Semantics for Adjoint Logic

Adjoint logic gives a framework for conservatively combining multiple intuitionistic log-
ics with varying structural properties [Pru+18]. Computational interpretations of adjoint logic
uniformly combinemessage-passing concurrency, shared-memory functionality, and sequential
computation [PP19b]. hemessage-passing interpretations permit communication patterns not
possible in languages like SILL that use binary session types [PP19a]. hese includemulticast, i.e.,
sending onemessage to multiple clients, and replicable services, where a service replicates itself
on-demand to handle requests from multiple clients. Giving these computational interpretations a
denotational semantics provides all of the beneûts described in chapter 1.

5.2.1. Related work. Adjoint logic was ûrst deûned in Reed’s [Ree09] unpublished note. It is
parametrized by a preorder M of “modes (of truth)”. Adjoint logic combines diòerent logics by
stratifying their propositions across modes. Each mode q has an associated set σ(q) of structural
properties satisûed by judgments at that mode. For cut-elimination to hold, σ must bemonotone.
Propositions can be shuttled across M-relatedmodes p ≤ q using an adjoint pair Fq≥p ⊣ Up≤q of
shi� operators. A proof of a judgments at mode p can only depend on judgments at modes q ≥ p.

Benton’s LNL [Ben94; Ben95] is a prototpical example of an adjoint logic. LNL combines
linear and non-linear logic using two modes. he linear mode L satisûes only exchange, while
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the non-linear mode NL satisûes weakening and contraction. he ordering L < NL ensures that a
proof of a non-linear proposition can depend only on other non-linear propositions.

Recall that in Reed’s deûnition, there exists exactly one adjoint pair Fq≥p ⊣ Up≤q for each
p ≤ q. Various applications require weakening this to allow for multiple unrelated adjunctions
between modes. To accomplish this, Licata and Shulman [LS16] generalized adjoint logic so that it
is parametrized by a 2-category ofmodes instead of a preorder ofmodes. hey show that their
generalization is sound and complete relative to a categorical semantics. Licata, Shulman, and
Riley [LSR17a; LSR17b] extend this work to capture restrictions enforced by more general context
structures such as trees and lists.

Pruiksma et al. [Pru+18] give three equivalent formulations of adjoint logic. he ûrst is a
variant of Reed’s [Ree09] with explicit structural rules. he second makes the structural rules
implicit. he third formulation is a polarized and focused presentation of adjoint logic.

Pfenning and Griõth [PG15] gave amessage-passing interpretation to an adjoint logic with
three modes of truth L < F < U. he linear layer L satisûed only the exchange rule. he aõne
layer F additionally satisûed weakening. he unrestricted layer U satisûed exchange, weakening,
and contraction. Each layer gave rise to diòerent computational behaviours. For example, linear
propositions gave rise to the usual session-typed channels, while channels corresponding to aõne
proposition could be discarded. Pruiksma and Pfenning [PP19a] generalized this work to give a
message-passing interpretation to full adjoint logic.

Pruiksma and Pfenning [PP19b] explores the consequences of changing to ordinary sequent
calculus to the semi-axiomatic sequent calculus. hey give the semi-axiomatic sequent calculus
amessage-passing interpretation, a shared-memory interpretation, and a sequential semantics.
hey use adjoint logic to coherently combine these three interpretations. hey then give a rational
reconstruction of SILL (albeit with a linear functional layer) and of linear futures.

5.2.2. Contribution. As a ûrst step, I propose extending the domain semantics of section 3.1
to themessage-passing interpretation of adjoint logic given by Pfenning and Griõth [PG15]. Once
I have determined the ideas required to handle this limited setting, I propose extending the work
to handle the interpretations of full adjoint logic [PP19a; PP19b].

5.3. Semantics forDependent Session Types

SILL allows processes to send functional values of type τ over channels of type τ ∧ A and
τ ⊃ A. hese protocols simply specify the type of values transmitted, but say nothing about the
relationships between transmitted values. However, real-world protocols o�en require these kinds
of speciûcations. Consider, for example, the 3-way handshake [Tom75; SD78; RFC793] used to
negotiate a TCP connection. he ûrst host A chooses a random value x and sends it to its partner
B. he host B chooses a random value y and sends the tuple (x + 1, y) to A. he host A then sends
the tuple (x + 1, y + 1) back to B, thereby establishing the connection. To fully specify this protocol
in a session-typed setting, types must refer to values, i.e., wemust use a dependent type theory.

Dependent SILL [TCP11; CPT12] replaces the types τ ∧ A and τ ⊃ A from ûg. 3.3 with their
dependent counterparts ∃x ∶ τ.A and ∀x ∶ τ.A, whose corresponding processes are formed by the
following four rules:

Ψ ⊩ M ∶ τ Ψ ; ∆ ⊢ P ∶∶ a ∶ A
Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ ∃x ∶ τ.A (∃R)

Ψ, x ∶ τ ; ∆, a ∶ A ⊢ Q ∶∶ c ∶ C
Ψ ; ∆, a ∶ ∃x ∶ τ.A ⊢ x ← input a;Q ∶∶ c ∶ C (∃L)

Ψ, x ∶ τ ; ∆ ⊢ Q ∶∶ a ∶ A
Ψ ; ∆ ⊢ x ← input a;Q ∶∶ a ∶ ∀x ∶ τ.A (∀R)

Ψ ⊩ M ∶ τ Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C
Ψ ; ∆, a ∶ ∀x ∶ τ.A ⊢ _← output a M; P ∶∶ c ∶ C (∀L)
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Assuming that the underlying functional language has been suitably extended to support
dependent types (including identity types), we can then capture the 3-way handshake protocol
using the type:

∃a ∶ nat.∀b ∶ nat × nat.∀p ∶ (π1b = a + 1).
∃c ∶ nat × nat.∃p′ ∶ (π1c = a + 1 ∧ π2c = π2b + 1).1

Let H abbreviate the above type, then the following process provides a service of type H:
|- A :: h : H
h <- A = _ <- output h (rand ()); % send x

(b1, b2) <- input h; % receive (z, y)
p <- input h; % receive proof of z = x + 1
_ <- output h (b1, b2 + 1); % send (x + 1, y + 1)
_ <- output h (p, refl); % send proof that we did so
close h % end session

A service providing or using the protocol H incurs a communication overhead compared to
its (under-speciûed) non-dependent form

τ ∧ ((τ × τ) ⊃ ((τ × τ) ∧ 1)) .

Indeed, the dependent form incurs communication overhead by transmitting proof terms, even
though they are not computationally relevant. he proof irrelevance [Pfe01; TCP11, § 4; Gom19,
pp. 59ò.] technique has been used to reduce or eliminate this overhead by specifying proofs that
can be erased from programs at run-time. Because they are erased, they are never transmitted,
thereby reducing communication overhead. Proof irrelevance is implemented using a collection
of typing rules that ensure that the irrelevant proofs exist and that they can be erased without
aòecting computation.

Concretely, given a functional type τ, the (functional) bracket type [τ] is inhabited by terms
M ∶ τ that can be erased before runtime without changing themeaning of the program [AB04]. To
make this precise,we ûrst allow functional contexts to also include assumptions x÷ τ that mean the
variable x abstracts over computationally irrelevant values of type τ. So that irrelevant terms can
depend on irrelevant values, we deûne a promotion operator on functional contexts that promotes
irrelevant hypotheses into ordinary ones:

(⋅)⊕ = ⋅
(Ψ, x ∶ τ)⊕ = Ψ⊕ , x ∶ τ
(Ψ, x ÷ τ)⊕ = Ψ⊕ , x ÷ τ.

he introduction and elimination rules for bracketed types are:

Ψ⊕ ⊩ M ∶ τ
Ψ ⊩ [M] ∶ [τ]

([] I)
Ψ ⊩ M ∶ [τ] Ψ, x ÷ τ ⊩ N ∶ σ

Ψ ⊩ let [x] = M in N ∶ σ
([]E)

Given a suitable erasure operation [PCT11, Deûnition 6], the above rules ensure that erasure do
not meaningfully aòect the computational behaviour of terms [PCT11,heorem 2].

Applying the proof irrelevance technique to the above 3-way handshake example, the protocol
H becomes:

∃a ∶ nat.∀b ∶ nat × nat.∀p ∶ [π1b = a + 1].
∃c ∶ nat × nat.∃p′ ∶ [π1c = a + 1 ∧ π2c = π2b + 1].1

So farwe have only considered dependency on functional values. Toninho andYoshida [TY18a;
TY18b] extend a SILL-style language with protocols that depend on transmitted data. To motivate
this dependency, they give the following protocol as an example. Consider a server that receives
a boolean value true or false. If it receives true, then the service sends a natural number and
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terminates. If it receives false, then the service sends a boolean and then terminates. With existing
techniques, this protocol can be approximated by following session type:

Bool ⊃ ⊕{t ∶ Nat ∧ 1, f ∶ Bool ∧ 1}.
However, this type does not prevent the server from taking the f branch even if it received true.
By extending the type system with dependent pattern matching, they can encode the intended
protocol as the type

∀x ∶ Bool.if x (Nat ∧ 1)(Bool ∧ 1).
More generally, their language supports type-level λ-abstraction over terms and session types.

5.3.1. Related work. Pfenning [Pfe01] introduced a dependent type theory that captures
proof irrelevance. Toninho, Caires, and Pfenning [TCP11] build on this work to give the ûrst
dependent-session-typed language based on intuitionistic linear logic. hey discussed using proof
irrelevance to reduce the communication overhead caused by transmitting proof objects. heir
work assumes that you can deûne type families in the underlying term language. Pfenning, Caires,
and Toninho [PCT11] use dependent session types to model various aspects of systems employing
certiûed code. hey propose two techniques to reduce the overhead of communicating andworking
with proof objects. he ûrst is proof irrelevance, and they give a theorem stating that erasures do
not aòect the computational behaviour of terms. he second technique involves delegating proof
veriûcation to a trusted veriûer. his veriûer returns a signed digital certiûcate attesting that the
proof is correct. Caires, Pfenning, and Toninho [CPT12] survey these two papers.

Griõth and Gunter [GG13] give a reûnement session type system for the π-calculus. hey also
give an inference algorithm for their type system.

Gommerstadt [Gom19, Chapter 6] presents monitoring for dependently-session-typed con-
tracts in the presence of proof irrelevance. Monitors need to check that transmitted values satisfy
the propositions speciûed by the protocol even if the proof objects are computationally irrelevant.
To do so, a proof object may still need to be transmitted if the proposition does not belong to a
decidable fragment.

Muijnck-Hughes, Brady, and Vanderbauwhede [MBV19] give an embedding of dependent
multi-party session types in the dependently-typed language Idris. hey illustrate practical applica-
tions of dependently-session-typed languages by implementing a series of examples, including the
above 3-way handshake, an “echo” server, and a server performing arithmetic operations.

5.3.2. Proposedwork. I propose to ûrst extendmy semantics from section 3.1 to handle types
depending on functional terms. his extension should also support proof irrelevance. I conjecture
that I will need to use ûbrations [Jac99], a standard technique for semantics of dependent type
theories. Once I can capture dependencies on functional terms, I propose extending the semantics
to the language given by Toninho and Yoshida [TY18a; TY18b].

5.4. Applications

To evaluate the tractability ofmy semantics, I propose applying it to the problems ofmonitoring

and program equivalence.

5.4.1. Monitoring. Concurrent contracts [GJP18; Gom19] enforce communication protocols
at run-time. Concurrent contracts are speciûed by a collection of session-typed partial identity
processes called “monitors”. Amonitor observes communications along a channel and raises a
global alarm if ever it witnesses a communication that violates the prescribed protocol.

To be amonitor, a process must be transparent [GJP18, § 4.4], i.e., observationally equivalent
to a partial identity process. Formally deûning transparency requires a complex bisimulation-style
construction. Showing that a process satisûes this deûnition is non-trivial. I naïvely conjecture
that domain-theoretic techniques will simplify the situation. Indeed, I conjecture that a process
Ψ ; b ∶ B ⊢ P ∶∶ a ∶ B is transparent if and only if for all u ∈ JΨK, JΨ ; b ∶ B ⊢ P ∶∶ a ∶ BKu ⊑
JΨ ; b ∶ B ⊢ a ← b ∶∶ a ∶ BKu, where we recall that JΨ ; b ∶ B ⊢ a ← b ∶∶ a ∶ BKu is the identity up-to
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renaming of channels. I conjecture that this conceptually simpler deûnition simpliûes the task of
checking that a process is indeed amonitor.

5.4.2. Process Equivalences. Proving program equivalences is in the best of cases a thorny
problem. Recall that denotational semantics automatically give a notion of program equivalence.
To show that this equivalence is a tractable solution to this problem, I propose proving several
non-trivial program equivalences. For the sake of exposition, I assume that our recursive types are
equirecursive instead of isorecursive (see section 6.1 for details).

5.4.2.1. Bit counters. We consider counter processes that receive inc and val messages. When
they receive a inc message, they increment an internal counter. When they receive a val message,
they send back the total number of inc messages received as a sequence of bits, where the least
signiûcant bit is sent ûrst. We specify a sequence of bits by the following protocol:

bits = ⊕{b0 ∶ bits, b1 ∶ bits, $ ∶ 1}.

In this protocol, $ denotes the end of the stream. he counter protocol is:

ctr = &{inc ∶ ctr, val ∶ bits}.

We consider two implementations of a counter, taken from [PK18, pp. L21.10ò.] and [DHP18].
In the ûrst case, we implement a counter ctr1 using an object-oriented approach, where we

store the count as a chain of processes, each representing a single bit in the binary representation of
the count. he zero and one processes respectively store the zero and one bits. he empty process
acts as the end of the chain of bits.
a :: ctr |- zero :: c : ctr
c <- zero <- a = case c { inc => % incrementing a zero bit turns it

% into a one bit
c <- one <- a

| val => % send the zero bit:
c.b0;
% forward the count from the rest
% of the chain of processes:
a.val; c <- a }

a :: ctr |- one :: c : ctr
c <- one <- a = case c { inc => % incrementing a one bit turns it

% to a zero. Send inc to a to carry.
a.inc; c <- zero <- a

| val => c.b1; a.val; c <- a }
|- empty :: c : ctr
c <- empty = case c { inc => a <- empty; c <- one <- a

| val => c.$; close c }
|- ctr1 :: c : ctr
c <- ctr1 = e <- empty; c <- zero <- e
In the second case, every time the counter receives the inc label, it spawns a process succ that
increments the bit stream storing the current count.
|- zero’ :: b : bits
b <- zero’ = b.b0; b.$; close b
a :: bits |- succ :: b : bits
b <- succ <- a = case a { $ => a.b1; a.$; b <- a

| b0 => a.b1; b <- a
| b1 => a.b0; b <- succ <- a }

b : bits |- ctr2’ :: c : ctr
c <- ctr2’ <- b = case c { inc => a <- succ <- b;

c <- ctr2’ <- a
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| val => c <- b }
|- ctr2 :: c : ctr
c <- ctr2 = z <- zero’;

c <- ctr2’ <- z
We expect that the processes ctr1 and ctr2 should denote the same function.
5.4.2.2. Sieve of Eratosthenes. Assume that our functional language has conditionals, natural

numbers nat, and a test “m | n” that passes if and only if m divides n. Let the type of streams of
natural numbers be given by

ns = nat ∧ ns.
Given a natural number n, the process filterMultiples n forwards all natural numbers on
channel i to o except for multiples of n.
n : nat; i : ns |- filterMultiples n :: o : ns
o <- filterMultiples n <- i =

m <- recv i;
if (n | m) then

% do not send m if divisible by n
o <- filterMultiples n <- i

else
% send m otherwise
send o m;
o <- filterMultiples n <- i

We can then use this process to write the sieve process:
i : ns |- sieve :: o : ns
o <- sieve <- i =

p <- recv i; % receive the next prime on i
t <- filterMultiples p <- i; % filter out its multiples from i
o <- sieve <- t % recurse with the sieve

he following process produces a stream of natural numbers starting from n:
|- natsFrom n :: o : ns
o <- natsFrom n =

send o n;
o <- natsFrom (n + 1)

Finally, we would like to show that the following process sends a natural number n on the stream
p if and only if n is prime:
|- primes :: p : ns
p <- primes =

n <- natsFrom 2;
p <- sieve <- n
5.4.2.3. Queues from stacks. A standard programming exercise is to implement a queue using

two stacks. he types of stacks and queues are respectively given by

τ stack = &{push ∶ τ⊸ (τ stack), pop ∶ ⊕{item ∶ τ ∧ (τ stack), err ∶ 1}},
τ queue = &{enq ∶ τ⊸ (τ queue), deq ∶ ⊕{item ∶ τ ∧ (τ queue), err ∶ 1}}.

We can implement a stack as a chain of cellS n processes, each storing a value of type τ (we asciify
τ as T). he empty stack is given by the process emptyS.
n : T; r : T stack |- cellS n :: s : T stack
s <- cellS n <- r = case r { push => v <- recv s;

t <- cellS n <- r;
s <- cellS v <- t

| pop => s.item;
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send s n;
s <- r }

|- emptyS :: s : T stack
s <- emptyS = case s { push => v <- recv s;

e <- emptyS;
s <- cellS v <- e

| pop => s.err; close s }
We can similarly implement a queue as a chain of processes, each storing a value of type τ:
n : T; r : T queue |- cellQ n :: q : T queue
q <- cellQ n <- l = case q { enq => % receive a value v to enqueue

v <- recv q;
% tell the tail to prepare to
% enqueue a value
r.enq;
% send it the value to enqueue
send r v;
% recurse so that n remains at
% the head of the queue
q <- cellQ n <- r

| deq => q.item;
send q n;
q <- r }

|- emptyQ :: q : T queue
q <- emptyQ = case q { enq => v <- recv q;

e <- emptyQ;
q <- cellQ v <- e

| deq => q.err; close q }
Alternatively, we can use two stacks. he flip process �ips all of the elements of a stack l onto a
stack r. he result is provided channel f .
l : T stack, r : T stack |- flip :: f : T stack
f <- flip <- l, r =

l.pop;
case l { err => close l; f <- r

| item => n <- recv l;
r.push;
send r n;
f <- flip <- l, r }

he core logic of the process implementing a queue using two stacks is in the ssq process. It uses
an “input stack” i and an “output stack” o. When a client tries to dequeue an element, it ûrst tries
to pop the element from the stack o. If o is empty, i.e., if o sends the label err, then ssq �ips the
input stack onto the output stack and tries again. If o is still empty, then the queue is also empty
and ssq raises an error. When a client tries to enqueue an element, ssq pushes it onto the input
stack.
i : T stack, o : T stack |- ssq :: q : T queue
q <- ssq <- i, o =

case q { enq => v <- recv q;
i.push;
send i v;
q <- ssq <- i, o

| deq => o.pop;
case o { item => q.item;
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v <- recv o;
send q v;
q <- ssq <- i, o

| err => close o;
e <- empty;
o <- flip <- i, e;
o.pop;
case o { item => q.item;

v <- recv o;
send q v;
i <- emptyS;
q <- ssq <- i, o

| err => q.err; q <- o }}}
he process emptySSQ provides an empty queue implemented using two stacks.
|- emptySSQ :: q : T queue
q <- emptySSQ =

i <- emptyS;
o <- emptyS;
q <- ssq <- i, o

We expect that emptyQ and emptySSQ are equivalent.
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CHAPTER 6

Optional ProposedWork

his chapter explores optional work that would be interesting to explore as support for my
thesis statement.

6.1. Semantics for Equirecursion

he semantics in section 3.1 treats recursive types isorecursively. hismeans that a recursive type
is taken to be isomorphic to its unfolding, and processes fold and unfold recursive types by sending
fold and unfold messages. An alternate approach is to treat recursive types equirecursively, where
we deem a recursive type to be deûnitionally equal to its unfolded form. To ensure that this is well
deûned, we require that recursive types be contractive. Recall that a type T is contractive [Pie02,
p. 300] if for any subexpression of T of the form ρα.ρα1 .ρ⋯.ραn .A, A is not α. he judgments
A typep

s and A ctypep
s mean A is a session type or a contractive session type with polarity p. hese

judgments are inductively deûned by the rules in ûg. 6.1. We abbreviate these judgments as Ξ ⊢ A
where no ambiguity arises. As in the isorecursive case, we interpret judgments Ξ ⊢ A as functors
JΞ ⊢ AK, JΞ ⊢ AKp ∶MΞ → M for p ∈ {−,+}.

he judgment Ξ ⊢ A ≡ A′ means that the types Ξ ⊢ A and Ξ ⊢ A′ are deûnitionally equal. It is
inductively deûned by the rules in ûg. 6.2. hese rules can be extended so that ≡ becomes a con-
gruence relation. We interpret this judgment as a natural isomorphism JΞ ⊢ A ≡ A′K ∶ JΞ ⊢ AK ≅
JΞ ⊢ A′K between the canonical interpretations of section 4.2. Conjecture 9 shows that we can
transfer these natural isomorphisms from the canonical interpretations to the polarized aspects.
hese natural isomorphisms are all well-behaved with regards to substitution and weakening. Let
mergeΞ⊢A be the natural projection associatedwith the natural embedding ⟨LΞ ⊢ A M− , LΞ ⊢ A M+⟩.

Conjecture 9. If ψ = JΞ ⊢ A ≡ BK ∶ JΞ ⊢ A typesK ≅ JΞ ⊢ B typesK, then there exist natural

isomorphisms ψ+ ∶ JΞ ⊢ A typesK+ ≅ JΞ ⊢ B typesK+ and ψ− ∶ JΞ ⊢ A typesK− ≅ JΞ ⊢ B typesK−

that commute with the natural e-p-pairs specifying the polarized aspects, i.e., the following diagram

commutes:

JΞ ⊢ A typesK

ψ

��

⟨L A M− ,L A M+⟩
// JΞ ⊢ A typesK− × JΞ ⊢ A typesK+

ψ
−×ψ

+

��

mergeA // JΞ ⊢ A typesK

ψ

��

JΞ ⊢ B typesK ⟨L B M− ,L B M+⟩
// JΞ ⊢ B typesK− × JΞ ⊢ B typesK+ mergeB

// JΞ ⊢ B typesK.

We use an equivalence ⋅ ⊢ A′ ≡ A between closed types A and A′ as follows:

Ψ ; ∆, a ∶ A′ ⊢ P ∶∶ b ∶ B ⋅ ⊢ A′ ≡ A
Ψ ; ∆, a ∶ A ⊢ P ∶∶ b ∶ B (Equiv-L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A′ ⋅ ⊢ A′ ≡ A
Ψ ; ∆ ⊢ P ∶∶ a ∶ A (Equiv-R)

33
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Ξ, α typep
s ⊢ α typep

s
(TVar)

Ξ ⊢ 1 ctype+s
(C1)

Ξ ⊢ A ctypep
s

Ξ ⊢ A typep
s

(TC)
Ξ, α typep

s ⊢ A ctypep
s

Ξ ⊢ ρα.A ctypep
s

(Cρ)

Ξ ⊢ A i type+s (∀i ∈ I)
Ξ ⊢ ⊕{l i ∶ A i}i∈I ctype+s

(C⊕)
Ξ ⊢ A i type−s (∀i ∈ I)
Ξ ⊢ &{l i ∶ A i}i∈I ctype−s

(C&)

Ξ ⊢ A type+s Ξ ⊢ B type+s
Ξ ⊢ A⊗ B ctype+s

(C⊗)
Ξ ⊢ A type+s Ξ ⊢ B type−s

Ξ ⊢ A⊸ B ctype−s
(C⊸)

Ξ ⊢ A type+s
Ξ ⊢ ↑A ctype−s

(C↑)
Ξ ⊢ A type−s
Ξ ⊢ ↓A ctype+s

(C↓)

τ typef Ξ ⊢ A type−s
Ξ ⊢ τ ⊃ A ctype−s

(C⊃)
τ typef Ξ ⊢ A type+s
Ξ ⊢ τ ∧ A ctype+s

(C∧)

Figure 6.1. Type formation rules in the equirecursive setting

Ξ ⊢ ρα.A ≡ [ρα.A/α]A
(E-ρ)

Ξ ⊢ A ≡ A (E-Refl) Ξ ⊢ A′ ≡ A
Ξ ⊢ A ≡ A′

(E-Sym) Ξ ⊢ A ≡ B Ξ ⊢ B ≡ C
Ξ ⊢ A ≡ C (E-Trans)

Figure 6.2. Deûnitional equality of types in the equirecursive setting

By conjecture 9, there exist natural isomorphisms JA′ ≡ AKp ∶ JA′Kp → JAKp for p ∈ {−,+}. he
rules (Equiv-L) and (Equiv-R) are respectively interpreted as:

JΨ ; a ∶ A, ∆ ⊢ P ∶∶ b ∶ BKu

= ((a− ∶ JA′ ≡ AK−) × id) ○ JΨ ; ∆, a ∶ A′ ⊢ P ∶∶ b ∶ BKu ○ ((a+ ∶ (JA′ ≡ AK+)−1) × id) ,
JΨ ; ∆ ⊢ P ∶∶ a ∶ AKu

= ((a+ ∶ JA′ ≡ AK+) × id) ○ JΨ ; ∆ ⊢ P ∶∶ a ∶ A′Ku ○ ((a− ∶ (JA′ ≡ AK−)−1) × id) .

Processes no longer have unique typing derivations because of the rules (Equiv-L) and (Equiv-R).
As a result, wemust show that denotations are coherent, i.e., that all derivations of the same process
induce equal denotations. his remains an open problem. I propose proving this result. I also
propose showing exactly how the isorecursive and equirecursive semantics are related.

6.2. Semantics for Subtyping

he semantic ideas underlying the equirecursive formulation should be easily adaptable to the
study of subtyping. For the sake of illustration, let us consider choice types. For semantic reasons
that will be made clear below, the subtyping relation <∶ needs to be polarized. When I ⊆ J, we
expect for internal choice that

⊕{l i ∶ A i}i∈I <∶+ ⊕{l i ∶ A i}i∈J ,

Indeed, any process that provides the type on the le� “also provides” the type on the right. If a
client accepts all of the labels on the right, then it necessarily accepts all of the labels on the le�.
he case for external choice is symmetric:

&{l i ∶ A i}i∈J <∶− &{l i ∶ A i}i∈I .

As a possible application, we would like to know whether a process providing a “smaller”
interface is simulated by a process providing a larger interface. With I ⊆ J, consider the following
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two processes:

Ψ ; ∆ ⊢ P ∶∶ z ∶ ⊕{l i ∶ A i}i∈I ,
Ψ ; ∆ ⊢ Q ∶∶ z ∶ ⊕{l i ∶ A i}i∈J .

Does Q simulate P? Formally, this corresponds to asking if JΨ ; ∆ ⊢ P ∶∶ z ∶ ⊕{l i ∶ A i}i∈JK ⊑
JΨ ; ∆ ⊢ Q ∶∶ z ∶ ⊕{l i ∶ A i}i∈JK. he catch is that P and Q have diòerent types, so we need some
means of taking JΨ ; ∆ ⊢ P ∶∶ z ∶ ⊕{l i ∶ A i}i∈IK to JΨ ; ∆ ⊢ P ∶∶ z ∶ ⊕{l i ∶ A i}i∈JK. To do so, I con-
jecture that we can follow the pattern of type equivalence and of conjecture 9.

First, we introduce judgments Ξ ⊢ A <∶p B for p ∈ {−,+}. We interpret these judgments as
natural embeddings

JΞ ⊢ A <∶p BK ∶ JΞ ⊢ AK⇒ JΞ ⊢ BK.

We use an analog of conjecture 9 to transfer the embedding from the canonical interpretations
of A and B to their polarized aspects. Here is the positive version, the negative version will be
symmetric in polarities.

Conjecture 10. If є = JΞ ⊢ A <∶+ BK ∶ JΞ ⊢ A typesK⇒ JΞ ⊢ B typesK, then there exist natu-

ral embeddings є+ ∶ JΞ ⊢ A typesK+ ⇒ JΞ ⊢ B typesK+ and є− ∶ JΞ ⊢ B typesK− ⇒ JΞ ⊢ A typesK−

that commute with the natural e-p-pairs specifying the polarized aspects, i.e., the following diagrams

commute:

JΞ ⊢ A typesK

є

��

L A M−
// JΞ ⊢ A typesK− JΞ ⊢ A typesK

є

��

L A M+
// JΞ ⊢ A typesK+

є
+

��

JΞ ⊢ B typesK L B M−
// JΞ ⊢ B typesK−

є
−

OO

JΞ ⊢ B typesK L B M+
// JΞ ⊢ B typesK+ .

To use the subtyping judgments, we extend the process typing rules to handle subtyping with
the following rules for positive subtyping (and their negative counterparts):

Ψ ; ∆, z ∶ B ⊢ P ∶∶ x ∶ C A <∶+ B
Ψ ; ∆, z ∶ A ⊢ P ∶∶ x ∶ C (SubT-+-L)

Ψ ; ∆ ⊢ P ∶∶ x ∶ A A <∶+ B
Ψ ; ∆ ⊢ P ∶∶ x ∶ B (SubT-+-R)

Adding these four rules introduces the same issues as did the rules (Equiv-L) and (Equiv-R) in
section 6.1: processes no longer have a unique derivation and wemust show that the denotations
are coherent.

Interpret (SubT-+-R) as follows:

JΨ ; ∆ ⊢ P ∶∶ x ∶ BKu

= (id × (x+ ∶ JΞ ⊢ A <∶+ BK+)) ○ JΨ ; ∆ ⊢ P ∶∶ x ∶ AKu ○ (id × (x− ∶ JΞ ⊢ A <∶+ BK−)) ,

and (SubT-+-L) as

JΨ ; ∆, z ∶ A ⊢ P ∶∶ x ∶ CKu

= (id × (z− ∶ JΞ ⊢ A <∶+ BK−)) ○ JΨ ; ∆, z ∶ B ⊢ P ∶∶ x ∶ CKu ○ (id × (z+ ∶ JΞ ⊢ A <∶+ BK+)) .

hese clauses explain why JΞ ⊢ A <∶+ BK+ and JΞ ⊢ A <∶+ BK− go in “opposite directions”.
I propose �eshing out the details of subtyping in this setting and exploring how this semantics

relates to existing work on subtyping for session types by Gay andHole [GH05], Gay and Vascon-
celos [GV10], Chen et al. [Che+17], Dezani-Ciancaglini et al. [Dez+16], and Das and Pfenning
[DP20].
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6.3. Complete Axioms for TraceOperators

Communicating systems o�en involve feedback. For example,we interpreted process composi-
tion in polarized SILL using a ûxed point that captured the feedback between two processes on their
common channel (see interpretation (5)). Feedback-as-a-ûxed-point is naturally captured by the
concept of a trace [JSV96]. Intuitively, the trace TrXA,B f ∶ A→ B of amorphism f ∶ A× X → B × X

can be thought of as the result of the feedback loop, where the output on X is fed “back into” the
input on X. Traces are explicitly given by deûnition 1, below.

We would like to be able to easily reason about process composition. To do so, it is helpful to
have a battery of trace identities. Fortunately, traces are well-studied objects andmany identities
are already known. Uniform traces [Has97; Has99a; Has03] also give rise to an induction-�avoured
proof principle [Sel99, p. 14] that can be used to show that two morphisms have the same trace. In
the context of processes, this proof principle can be used to show that two process compositions
have the same denotation.

In light of the above, reûning our understanding of traces should help reason about the
denotations of processes.

6.3.1. Background. Căzănescu and Ştefănescu [CŞ90, § 4.3] ûrst introduced traces for sym-
metricmonoidal categories under the name “bi�ow”. hey were interested in giving an algebraic
formalism to study �owchart schemes with feedback. Traces were then independently rediscovered
by Joyal, Street, andVerity [JSV96] in the setting of balancedmonoidal categories. heirmotivation
was a generalization of traces for linear functions between ûnite dimensional vector spaces. his
generalization is explored in greater detail by Ponto and Shulman [PS13, Example 3.1]. Below, we
give the deûnition of traces in the setting of symmetricmonoidal categories.

Amonoidal category is a sextuple (M,⊗, I, λ, ρ, α, σ) satisfying the pentagon axiom [Eti+15,
diagram (2.2)] and the triangle axiom [Eti+15, diagram (2.10)], where

● M is a category
● ⊗ ∶M ×M→M is a tensor product on M
● I is the unit of the tensor
● λ ∶ I × A⇒ A is a natural isomorphism witnessing that I is the le� unit
● ρ ∶ A⊗ I ⇒ A is a natural isomorphism witnessing that I is the right unit
● α ∶ (A⊗ B)⊗ C ⇒ A⊗ (B ⊗ C) is a natural isomorphism witnessing the associativity of
⊗.

A monoidal category is symmetric if it is additionally equipped by a natural isomorphism σ ∶
A⊗ B → B ⊗ A satisfying various other axioms given on [BW99, p. 404]. For expository accounts
ofmonoidal categories, see [Eti+15, Chapter 2] and [BW99, Chapter 16]

Definition 1 ([BH03, Deûnition 2.4]). A trace on a symmetricmonoidal category (M,⊗, I,
λ, ρ, α, σ) is a family of functions

TrUA,B ∶M(A⊗U , B ⊗U)→M(A, B)
satisfying the following conditions:

(1) Naturality in A (le� tightening): if f ∶ A′ ⊗U → B ⊗U and g ∶ A→ A′, then

TrUA,B ( f ○ (g ⊗ idU)) = TrUA′ ,B( f ) ○ g ∶ A→ B.

(2) Naturality in B (right tightening): if f ∶ A⊗U → B′ ⊗U and g ∶ B′ → B, then

TrUA,B ((g ⊗ idU) ○ f ) = g ○TrUA,B′( f ) ∶ A→ B.

(3) Dinaturality (sliding): if f ∶ A⊗U → B ⊗ V and g ∶ V → U , then

TrUA,B ((idB ⊗ g) ○ f ) = TrVA,B ( f ○ (idA ⊗ g)) ∶ A→ B.

(4) Action (vanishing): if f ∶ A→ B, then

TrIA,B (ρ−1 ○ f ○ ρ) = f ∶ A→ B,
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and if f ∶ A⊗ (U ⊗ V)→ B ⊗ (U ⊗ V), then

TrU⊗V

A,B ( f ) = TrUA,B (TrVA⊗U ,B⊗U (α−1 ○ f ○ α)) .

(5) Superposing: if f ∶ A⊗U → B ⊗U , then

TrUC⊗A,C⊗B (α−1 ○ (idC ⊗ f ) ○ α) = idC ⊗TrUA,B( f ) ∶ C ⊗ A→ C ⊗ B.
(6) Yanking: for all U ,

TrUU ,U (σU ,U) = idU ∶ U → U .

Ponto and Shulman [PS13] give an expository accounts of traces. Selinger [Sel11] gives an
expository account of graphical languages used to reason and communicate about monoidal
categories, including tracedmonoidal categories.

Relatedly, a category can have a parametrized ûxed-point operator:

Definition 2 ([SP00, Deûnitions 2.2, 2.4]). A parametrized fixed-point operator on a
category M is a family ofmorphisms (⋅)† ∶M(X × A→ A)⇒M(X → A) satisfying:

(1) Naturality: for any g ∶ X → Y and f ∶ Y × A→ A,

f
† ○ g = ( f ○ (g × idA))† ∶ X → A.

(2) he parametrized ûxed-point property: for any f ∶ X × A→ A,

f ○ ⟨idX , f †⟩ = f † ∶ X → A.

It is a Conway operator if it additionally satisûes:

(3) Parameterized dinaturality: for any f ∶ X × B → A and g ∶ X × A→ B,

f ○ ⟨idX , (g ○ ⟨πX , f ⟩)†⟩ = ( f ○ ⟨π1 , g⟩)† ∶ X → A.

(4) he diagonal property: for any f ∶ X × A× A→ A,

( f ○ (idX × ∆))† = ( f †)† ∶ X → A,

where ∆ ∶ A→ A× A is the diagonal map.

In [Has99b, Proposition 7.1.4;Has03, Deûnition 2.2],Hasegawa generalizes Plotkin’s uniformity
principle [Plo78, Exercise 2.30] for ûxed points to deûne uniform traces. In the case of the usual
trace on a category of domains, uniformity means that for any strict morphism h ∶ X → Y and
morphisms f ∶ A×X → B×X and g ∶ A×Y → B×Y , if (idB×h)○ f = g ○(idA×h) ∶ A×B → B×Y ,
then TrXA,B( f ) = TrYA,B(g) ∶ A→ B. In terms of applications, that means that to show TrXA,B( f ) =
TrYA,B(g) ∶ A→ B, it is suõcient to ûnd a strict h ∶ X → Y satisfying the uniformity hypothesis.

6.3.2. RelatedWork. Traces have been widely used to model feedback and communication.
For example, Abramsky [Abr96] uses traces to capture feedback for resumptions, and to capture
symmetric feedback between interacting processes. Abramsky and Jagadeesan [AJ94] similarly use
traces to capture feedback between processes when interpreting the Cut rule of linear logic in a
Geometry of Interaction interpretation. Selinger [Sel99] uses traces to give a categorical account of
asynchronous communication in networks of parallel processes. Abramsky,Haghverdi, and Scott
[AHS02] give an axiomatic account of Girard’s Geometry of Interaction in a categorical setting.
hey used traces to deûne composition ofmorphisms as symmetric feedback.

Traces and Conway operators are well-studied in general categorical settings. Hasegawa
[Has99b, heorem 7.1] and Hyland independently discovered [BH03, p. 281] that a cartesian
category has a trace if and only if it has a Conway operator. Motivated by examples from functional
programming, Benton andHyland [BH03] generalized this result to Freyd categories. Hasegawa
[Has03] uses uniform traces to construct new traced monoidal categories from existing ones.
Simpson and Plotkin [SP00] give a complete axiomatic account of Conway operators in categories.
As futurework, they propose extending theirwork to give a complete equational theory for uniform
traces.
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6.3.3. Contribution. he trace operator on ω-aBC is uniform and is used to interpret process
composition. As a result, it would be useful in reasoning about process composition to have a
complete equational theory for uniform traces. I propose exploring this problem.
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CHAPTER 7

Conclusion and Timeline

I have proposed an ambitious but achievable body of work to support my thesis statement:
Denotational semantics elucidate the structure of session-typed languages and

allow us to reason about programs written in these languages in ways that are

complementary to existing approaches.

Indeed, in section 3.1 I presented a taste of a denotational semantics for SILL, a session-typed
language with a functional layer and general recursion. I used this semantics to prove various
η-like equivalences for processes. In the cited completed work [Kav20], I used this semantics to
prove other interesting equivalences. For example, I showed that �ipping a stream of bits twice is
semantically equivalent to the forwarding (identity) process.

I proposed work in subsequent sections that builds on this semantics to further support my
thesis statement. In section 5.1, I proposed showing thatmy semantics is sound and adequate relative
to existing operational semantics. his establishes the complementary nature ofmy semantics.

In sections 5.2 and 5.3 I proposed to expand my semantics to account for features such as
shared-memory and dependent session types. his will show that the semantic techniques I have
develop scale to richer settings.

My proposedwork supports the claim that denotational semantics can be used to reason about
programs written in session-typed languages. I proposed using denotational semantics to reason
about run-time monitoring of programs in section 5.4.1. In section 5.4.2, I proposed using my
semantics to validate various non-trivial process equivalences and to verify the correctness of other
processes.

I propose completing the proposed work according to the following tentative timeline.
February 2020: he work of section 3.1 has been submitted to FSCD 2020.
April 2020: A large portion of the work for section 4.1 is complete, but needs polishing. Several

conjectures remain. I propose submitting this work to MFPS 2020. Its deadlines are
March 30, 2020 (abstract submission) and April 3, 2020 (paper submission).

he work of section 5.1 is still in its preliminary stages and could be submitted to
CONCUR 2020. Its deadlines are April 15, 2020 (abstract submission) and April 22, 2020
(paper submission).

July 2020: Submit the results of section 5.2 to POPL 2021. Its deadline is July 9, 2020.
October 2020: Submit the results of section 5.3 to FoSSaCS.
March/April 2021: he work of section 6.1 is partially complete, but is of low priority. No work

has been done on section 6.2. heir results could be submitted to MFPS 2021 or CON-
CUR 2021.

Spring 2021: Writemy dissertation.
May 2021: Defend.
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https://www.coalg.org/calco-mfps-2019/mfps/
https://concur2020.forsyte.at/
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