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Miscommunication is costly

• Incorrectly implemented communication protocols are costly

• Want to statically guarantee our programs communicate correctly
• Want to precisely specify the desired communication behaviours
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Key technology: Session types

Session types encode communication protocols as types.

• Multiparty session types (MPST) specify systems top-down

+ Specify rich interactions involving multiple processes

- Typically not compositional, a closed-world approach
• Binary session types specify systems bottom-up

- Only specify local interactions between pairs of processes

+ Compositional, with many expressive varieties

Research Problem
Can we have the best of both worlds:
the ability to specify global properties and compositionality?
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Specifying communication-based concurrency

P c0 : A0
c1 : A1
cn : An

...

Client Server

where

• P — process
• ci — name of bidirectional communication channel
• Ai — protocol (session type) on channel ci

Write P [c1 : A1, . . . , cn : An] (c0 : A0) to syntactically specify P
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Bit streams

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Example communications satisfying bits:

c : bits
b0b1b0b0 · · ·
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Specifying bit flipping

F o : bitsi : bits
b0b1b0 b1b0b1

F [i : bits] (o : bits) =
case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }
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Specifying bit flipping

F o : bitsi : bits
b0b1b0 b1b0b1

F [i : bits] (o : bits) =
case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

Problem
The specification F [i : bits] (o : bits) does not specify or
enforce bit flipping!
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Today’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Three ingredients:

1. syntax for specifying protocols with type-level computation
2. semantic framework for explaining protocols as sequences of
allowed communications while taking dependency into account

3. static typechecking to ensure that processes satisfy their protocols
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Most’s Syntax



Introducing message-observing session types

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice

| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} reduces to A if l observed on channel c
CASE c {l⇒ A | r⇒ B} reduces to B if r observed on channel c

See paper for how to observe termination and channel transmission!
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Revisiting bit flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol relative to a channel i : bits:

bitsFlip(i) = CASE i {b0⇒ (b1 ⦂ bitsFlip(i))
| b1⇒ (b0 ⦂ bitsFlip(i))}

F [i : bits] (o : bitsFlip(i)) = ···

This technique can specify any stream transducer or multiplexer!
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Insight #1: Type-level concurrent computation

First Key Insight
We can specify dependent communication protocols with a restricted
form of type-level concurrent computation.
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Composing processes

We want to be able to specify process compositions:

F F o : idBits(i)i : bits
m : bitsFlip(i)

We want to reason about the whole in terms of the specifications
of the parts.
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Insight #2: Tracking ambient channels to achieve compositionality

The specification of the right process depends on an ambient i : bits:

F o : idBits(i)m : bitsFlip(i)

We extend our specifications to track assumptions about
ambient channels:

F {i : bits} [m : bitsFlip(i)] (o : idBits(i)) = ...

Rely-guarantee perspective ensures compositionality!
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Most’s Semantics



Denotational semantics

A process denotes a set of traces of messages sent or received on
channels. For example, flipping bits received on m onto a channel o:

JF(m;o)K = {recv b0 on m :: send b1 on o :: · · · ,
recv b1 on m :: send b0 on o :: · · · , . . .}

A specification denotes a set of allowed traces, interleaved with
constraints on ambient channels. For example,

J{i : bits} [m : bitsFlip(i)] (o : idBits(i))K
= { rely b0 on i :: recv b1 on m :: send b0 on o :: · · · , . . .}
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Typechecking Most



Constraint generation and checking

Typechecking P against a specification generates constraints T on the

what communications may appear on ambient channels:

P � {AmbientCtx} [ClientCtx] (a : A) // T

When typechecking process compositions, we check that each process
satisfies the constraints that the other imposes on its channels.
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Soundness

Theorem
Our typechecking algorithm is semantically sound:
If P typechecks against a specification, then its traces are among those
allowed by that specification.
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Related Work

Not the first dependent session type system, but crucially different:

• Value-dependent session types: types depend on transmitted values.
• Label-dependent session types: types depend on transmitted labels.

Multi-party session types provide a rich notion of process specification,
but are quite complex and not compositional.
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Future Work

• Introduce sharing to specify and verify shared services
(databases, shared data structures, etc.)

• Develop an elegant subtyping relation to allow composition along
channels with different types

• Mechanize the system and extract a verified compiler
• Characterize the expressiveness gap between Most and MPST
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Takeaways

Concurrent type-level computation lets us compositionally specify
protocols that vary based on ambient communications.

Most provides a significant step towards capturing message-dependent
protocols and providing more precise specifications.

I am recruiting students! If this work sounds interesting,
please come talk to me!

18


	Most's Syntax
	Most's Semantics
	Typechecking Most

