Message-Observing Sessions

Ryan Kavanagh and Brigitte Pientka
OOPSLA 2024
Université du Québec a Montréal and McGill University

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Communicating systems are ubiquitous

Communicating systems are ubiquitous

/

n@_mé

,x
W 5
29 i

o DNnm 4@ o

g *

u‘.._" _ﬁ._

Communicating systems are ubiquitous

Communicating systems are ubiquitous

ol Nt
(qum\l
G

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

dWs

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

aws yahoo/

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

aws yahoo? ()

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

aws yahoo? ()

I *I Canada Revenue Agence du revenu
Agency du Canada

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

aws yahoo? ()

I *I Canada Revenue Agence du revenu
Agency du Canada

- Want to statically guarantee our programs communicate correctly

Miscommunication is costly

« Incorrectly implemented communication protocols are costly

aws yahoo? ()

I *I Canada Revenue Agence du revenu
Agency du Canada

- Want to statically guarantee our programs communicate correctly
- Want to precisely specify the desired communication behaviours

Key technology: Session types

Session types encode communication protocols as types.

Key technology: Session types

Session types encode communication protocols as types.

- Multiparty session types (MPST) specify systems top-down

+ Specify rich interactions involving multiple processes
= Typically not compositional, a closed-world approach

Key technology: Session types

Session types encode communication protocols as types.

- Multiparty session types (MPST) specify systems top-down
+ Specify rich interactions involving multiple processes
= Typically not compositional, a closed-world approach

+ Binary session types specify systems bottom-up

= Only specify local interactions between pairs of processes
+ Compositional, with many expressive varieties

Key technology: Session types

Session types encode communication protocols as types.

- Multiparty session types (MPST) specify systems top-down

+ Specify rich interactions involving multiple processes
= Typically not compositional, a closed-world approach

+ Binary session types specify systems bottom-up

= Only specify local interactions between pairs of processes
+ Compositional, with many expressive varieties

Research Problem

Can we have the best of both worlds:
the ability to specify global properties and compositionality?

Specifying communication-based concurrency

C1: Aq : A
A : 0-A0

Client Sefver

where

+ P — process
- ¢j — name of bidirectional communication channel
- Aj — protocol (session type) on channel ¢;

Write P [c1: Ay, ..., Cn: An] (Co : Ag) to syntactically specify P

Bit streams

Bit stream protocol:

bits = (b0 8 bits) & (b1 8 bits)
Example communications satisfying bits:

bOb1b0bO---

> ¢ : bits

Specifying bit flipping

b0 b1b0

b1b0 b
i bits < s F &

> 0 : bits

F [i : bits] (o : bits) =
case 1 { b0 = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0 b1b0

b1b0 b
i bits < s F &

> 0 : bits

F [i : bits] (o : bits) =
case 1 { b® = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0 b1b0

b1b0 b
i bits < s F &

> 0 : bits

F [i : bits] (o : bits) =
case 1 { b® = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

bOb1b0

b1b0 b
i bits < s F &

> 0 : bits

F [1 : bits] (o : bits) =
case i1 { b0 = send bl on o; F(1; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0b1b0 b1b0 b1
I : bits < > F' < > 0 : bits

F [i : bits] (o : bits) =
case 1 { b0 = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0b1b0 b1b0 b1
I : bits < > F' < > 0 : bits

F [i : bits] (o : bits) =
case 1 { b0 = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0b1b0 b1b0 b1
I : bits < > F' < > 0 : bits

F [i : bits] (o : bits) =
case 1 { b® = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Specifying bit flipping

b0b1b0 b1b0 b1
I : bits < > F < > 0 : bits

F [i : bits] (o : bits) =
case 1 { b0 = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Problem
The specification F [i : bits] (o : bits) does not specify or

enforce bit flipping!

Today'’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Today'’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Today'’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Today'’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Three ingredients:

1. syntax for specifying protocols with type-level computation

2. semantic framework for explaining protocols as sequences of
allowed communications while taking dependency into account

3. static typechecking to ensure that processes satisfy their protocols

Most’s Syntax

Introducing message-observing session types

ABi=--. other session types
| (LsA)® (rsB) labelled choice

Introducing message-observing session types

ABi=--. other session types
| (LsA)® (rsB) labelled choice
| CASEc {[=>A|r= B} label observation

Introducing message-observing session types

ABi=--. other session types
| (LsA)® (rsB) labelled choice
| CASEc {[=>A|r= B} label observation

Operational Intuition

CASEc {l=A|r= B} reduces to A if [observed on channel c
CASEc {l=A|r= B} reduces to B if r observed on channel ¢

Introducing message-observing session types

ABi=--. other session types
| (LsA)® (rsB) labelled choice
| CASEc {[=>A|r= B} label observation

Operational Intuition

CASEc {l=A|r= B} reduces to A if [observed on channel c
CASEc {l=A|r= B} reduces to B if r observed on channel ¢

See paper for how to observe termination and channel transmission!

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 => (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 2 bitsFlip(i))
| b1=> (bO ¢ bitsFlip(i)) }

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

F [i: bits] (o : bitsFlip(i)) = ---

Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

F [i: bits] (o : bitsFlip(i)) = ---

This technique can specify any stream transducer or multiplexer!

Insight #1: Type-level concurrent computation

First Key Insight
We can specify dependent communication protocols with a restricted
form of type-level concurrent computation.

10

Composing processes

We want to be able to specify process compositions:

>
>

m : bitsFlip(i)

i : bits

0 : idBits(i)

1

Composing processes

We want to be able to specify process compositions:

m : bitsFlip(i)

i : bits > o : idBits(i)

We want to reason about the whole in terms of the specifications
of the parts.

1

Insight #2: Tracking ambient channels to achieve compositionality

The specification of the right process depends on an ambient i : bits:

m : bitsFlip(i) o : idBits(i)

12

Insight #2: Tracking ambient channels to achieve compositionality

The specification of the right process depends on an ambient i : bits:

m : bitsFlip(i) o : idBits(i)

We extend our specifications to track assumptions about
ambient channels:

F {i : bits} [m : bitsFlip(i)] (o : idBits(i)) = ...

Rely-guarantee perspective ensures compositionality!

12

Most's Semantics

Denotational semantics

A process denotes a set of traces of messages sent or received on
channels. For example, flipping bits received on m onto a channel o:

[F(m;0)] = {recvbOonm:sendblono::---,
recvblonm:sendbOono:---,...}

13

Denotational semantics

A process denotes a set of traces of messages sent or received on
channels. For example, flipping bits received on m onto a channel o:

[F(m;0)] = {recvbOonm:sendblono::---,

recvblonm:sendbOono:---,...}

A specification denotes a set of allowed traces, interleaved with
constraints on ambient channels. For example,

[{i:bits} [m: bitsFlip(i)] (o : idBits(i))]
={relybOoni:recvblonm:sendbOono:---,...}

13

Typechecking Most

Constraint generation and checking

Typechecking P against a specification generates constraints 7 on the

what communications may appear on ambient channels:

P I+ {AmbientCtx} [ClientCtx] (a:A) // T

14

Constraint generation and checking

Typechecking P against a specification generates constraints 7 on the

what communications may appear on ambient channels:

P I+ {AmbientCtx} [ClientCtx] (a:A) // T

When typechecking process compositions, we check that each process
satisfies the constraints that the other imposes on its channels.

14

Soundness

Theorem

Our typechecking algorithm is semantically sound:

If P typechecks against a specification, then its traces are among those
allowed by that specification.

15

Related Work

Not the first dependent session type system, but crucially different:

- Value-dependent session types: types depend on transmitted values.

- Label-dependent session types: types depend on transmitted labels.

Multi-party session types provide a rich notion of process specification,
but are quite complex and not compositional.

16

Future Work

- Introduce sharing to specify and verify shared services
(databases, shared data structures, etc.)

- Develop an elegant subtyping relation to allow composition along
channels with different types

- Mechanize the system and extract a verified compiler
« Characterize the expressiveness gap between Most and MPST

17

Takeaways

Concurrent type-level computation lets us compositionally specify
protocols that vary based on ambient communications.

Most provides a significant step towards capturing message-dependent
protocols and providing more precise specifications.

I am recruiting students! If this work sounds interesting,
please come talk to me!

18

	Most's Syntax
	Most's Semantics
	Typechecking Most

