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« Incorrectly implemented communication protocols are costly

aws yahoo? ()

I *I Canada Revenue  Agence du revenu
Agency du Canada

- Want to statically guarantee our programs communicate correctly
- Want to precisely specify the desired communication behaviours
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Key technology: Session types

Session types encode communication protocols as types.

- Multiparty session types (MPST) specify systems top-down

+ Specify rich interactions involving multiple processes
= Typically not compositional, a closed-world approach

+ Binary session types specify systems bottom-up

= Only specify local interactions between pairs of processes
+ Compositional, with many expressive varieties

Research Problem

Can we have the best of both worlds:
the ability to specify global properties and compositionality?



Specifying communication-based concurrency

C1: Aq : A
A : 0-A0

Client Sefver

where

+ P — process
- ¢j — name of bidirectional communication channel
- Aj — protocol (session type) on channel ¢;

Write P [c1: Ay, ..., Cn: An] (Co : Ag) to syntactically specify P



Bit streams

Bit stream protocol:

bits = (b0 8 bits) & (b1 8 bits)
Example communications satisfying bits:

bOb1b0bO---

> ¢ : bits
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Specifying bit flipping

b0b1b0 b1b0 b1
I : bits < > F < > 0 : bits

F [i : bits] (o : bits) =
case 1 { b0 = send bl on o; F(i; o)
| bl = send b0 on o; F(i; o) }

Problem
The specification F [i : bits] (o : bits) does not specify or

enforce bit flipping!
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Today'’s contribution: Most

Most is a language for compositionally specifying communication
protocols that depend on communications occurring on other channels.

Three ingredients:

1. syntax for specifying protocols with type-level computation

2. semantic framework for explaining protocols as sequences of
allowed communications while taking dependency into account

3. static typechecking to ensure that processes satisfy their protocols



Most’s Syntax
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Introducing message-observing session types

ABi=--. other session types
| (LsA)® (rsB) labelled choice
| CASEc {[=>A|r= B} label observation

Operational Intuition

CASEc {l=A|r= B} reduces to A if [ observed on channel c
CASEc {l=A|r= B} reduces to B if r observed on channel ¢

See paper for how to observe termination and channel transmission!
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Revisiting bit flipping

Bit stream protocol:

bits = (b0 3 bits) @ (b13 bits)

Bit flipping protocol relative to a channel 1 : bits:

bitsFlip(i) = CASE i {b0 = (b1 ¢ bitsFlip(i))
| b1=> (bo g bitsFlip(i)) }

F [i: bits] (o : bitsFlip(i)) = ---

This technique can specify any stream transducer or multiplexer!



Insight #1: Type-level concurrent computation

First Key Insight
We can specify dependent communication protocols with a restricted
form of type-level concurrent computation.
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Composing processes

We want to be able to specify process compositions:

>
>

m : bitsFlip(i)

i : bits

0 : idBits(i)
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Composing processes

We want to be able to specify process compositions:

m : bitsFlip(i)

i : bits > o : idBits(i)

We want to reason about the whole in terms of the specifications
of the parts.

1



Insight #2: Tracking ambient channels to achieve compositionality

The specification of the right process depends on an ambient i : bits:

m : bitsFlip(i) o : idBits(i)
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Insight #2: Tracking ambient channels to achieve compositionality

The specification of the right process depends on an ambient i : bits:

m : bitsFlip(i) o : idBits(i)

We extend our specifications to track assumptions about
ambient channels:

F {i : bits} [m : bitsFlip(i)] (o : idBits(i)) = ...

Rely-guarantee perspective ensures compositionality!
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Denotational semantics

A process denotes a set of traces of messages sent or received on
channels. For example, flipping bits received on m onto a channel o:

[F(m;0)] = {recvbOonm:sendblono::---,
recvblonm:sendbOono:---,...}
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Denotational semantics

A process denotes a set of traces of messages sent or received on
channels. For example, flipping bits received on m onto a channel o:

[F(m;0)] = {recvbOonm:sendblono::---,

recvblonm:sendbOono:---,...}

A specification denotes a set of allowed traces, interleaved with
constraints on ambient channels. For example,

[{i:bits} [m: bitsFlip(i)] (o : idBits(i))]
={relybOoni:recvblonm:sendbOono:---,...}
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Typechecking Most




Constraint generation and checking

Typechecking P against a specification generates constraints 7 on the

what communications may appear on ambient channels:

P I+ {AmbientCtx} [ClientCtx] (a:A) // T
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Constraint generation and checking

Typechecking P against a specification generates constraints 7 on the

what communications may appear on ambient channels:

P I+ {AmbientCtx} [ClientCtx] (a:A) // T

When typechecking process compositions, we check that each process
satisfies the constraints that the other imposes on its channels.
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Soundness

Theorem

Our typechecking algorithm is semantically sound:

If P typechecks against a specification, then its traces are among those
allowed by that specification.
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Related Work

Not the first dependent session type system, but crucially different:

- Value-dependent session types: types depend on transmitted values.

- Label-dependent session types: types depend on transmitted labels.

Multi-party session types provide a rich notion of process specification,
but are quite complex and not compositional.
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Future Work

- Introduce sharing to specify and verify shared services
(databases, shared data structures, etc.)

- Develop an elegant subtyping relation to allow composition along
channels with different types

- Mechanize the system and extract a verified compiler
« Characterize the expressiveness gap between Most and MPST

17



Takeaways

Concurrent type-level computation lets us compositionally specify
protocols that vary based on ambient communications.

Most provides a significant step towards capturing message-dependent
protocols and providing more precise specifications.

I am recruiting students! If this work sounds interesting,
please come talk to me!
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