
Channel-Dependent Session Types

Ryan Kavanagh, Brigitte Pientka
NJ Programming Languages and Systems Seminar, May 2022

McGill University

Channel-Dependent Session Types

Ryan Kavanagh, Brigitte Pientka
NJ Programming Languages and Systems Seminar, May 2022

McGill University

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?

1

Communicating Systems and Session Types

Programs written in session-typed programming languages are
guaranteed to obey their protocols.

Today: How can we capture more expressive protocols?20
22
-0
5-
19 Channel-Dependent Session Types

Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols

Processes and Session-Typed Channels

P o1 : B1
om : Bm

...
i1 : A1
in : An

...

Input Output

Where
• ij, ok — input and output channel names
• Aj, Bk — protocols (session types)
• P — process

2

Processes and Session-Typed Channels

P o1 : B1
om : Bm

...
i1 : A1
in : An

...

Input Output

Where
• ij, ok — input and output channel names
• Aj, Bk — protocols (session types)
• P — process

20
22
-0
5-
19 Channel-Dependent Session Types

Processes and Session-Typed Channels

1. Think process as black boxes communicating over wires.
2. Wires are called “channels”; communication should respect a protocol.
3. The protocol specifies what kind of message can be transmitted next.
4. Protocols evolve over the course of communication to allow for different
kinds of messages.

5. Make clear that channels and protocols are different.
6. In general, communication is bidirectional, but today, assume left to right.

Processes and Session-Typed Channels

P o1 : B1
om : Bm

...
i1 : A1
in : An

...

Input Output

Syntactically:
I ` P :: O

where I = i1 : A1, . . . , in : An and O = o1 : B1, . . . ,om : Bm.

2

Processes and Session-Typed Channels

P o1 : B1
om : Bm

...
i1 : A1
in : An

...

Input Output

Syntactically:
I ` P :: O

where I = i1 : A1, . . . , in : An and O = o1 : B1, . . . ,om : Bm.

20
22
-0
5-
19 Channel-Dependent Session Types

Processes and Session-Typed Channels

1. Think process as black boxes communicating over wires.
2. Wires are called “channels”; communication should respect a protocol.
3. The protocol specifies what kind of message can be transmitted next.
4. Protocols evolve over the course of communication to allow for different
kinds of messages.

5. Make clear that channels and protocols are different.
6. In general, communication is bidirectional, but today, assume left to right.

Bit Streams

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Example communications satisfying bits:

c : bits
b0b1b0b0 · · ·

3

Bit Streams

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Example communications satisfying bits:

c : bits
b0b1b0b0 · · ·

20
22
-0
5-
19 Channel-Dependent Session Types

Bit Streams

1. Recurring example throughout this talk — bit streams
2. We can also deal with more interesting features like queues and stacks or
channel transmission, but bit streams are useful for illustrating key features.

3. Protocol specifies what communications can be sent on a channel.
4. A communication is a sequence of messages.
5. This is a recursive protocol.
6. Send a bit, and then say that the remainder of the communication will
follow the bits protocol: protocols change

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

Problem
The typing judgment i : bits ` F :: o : bits does not specify or
enforce bit flipping!

4

Flipping Bits

F o : bitsi : bits
b0b1b0 b1b0b1

i : bits ` F :: o : bits
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

Problem
The typing judgment i : bits ` F :: o : bits does not specify or
enforce bit flipping!20

22
-0
5-
19 Channel-Dependent Session Types

Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice

| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

5

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice

| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

20
22
-0
5-
19 Channel-Dependent Session Types

Extending Session Types With Observing Processes

1. Only giving syntax for binary choice, but assume it for any finite arity
2. Use definitional equality to capture type-level computation

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice
| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

5

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice
| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

20
22
-0
5-
19 Channel-Dependent Session Types

Extending Session Types With Observing Processes

1. Only giving syntax for binary choice, but assume it for any finite arity
2. Use definitional equality to capture type-level computation

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice
| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

5

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice
| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c20

22
-0
5-
19 Channel-Dependent Session Types

Extending Session Types With Observing Processes

1. Only giving syntax for binary choice, but assume it for any finite arity
2. Use definitional equality to capture type-level computation

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o :
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o :
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o :
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o :
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : (b1 ⦂ bitsFlip)
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : (b1 ⦂ bitsFlip)
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : (b1 ⦂ bitsFlip)
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : (b1 ⦂ bitsFlip)
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }

6

Revisiting Bit Flipping

Bit stream protocol:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)

Bit flipping protocol, assuming i : bits:

bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)
| b1⇒ (b0 ⦂ bitsFlip)}

i : bits ` F :: o : bitsFlip
F(i; o) = case i { b0 ⇒ send b1 on o; F(i; o)

| b1 ⇒ send b0 on o; F(i; o) }20
22
-0
5-
19 Channel-Dependent Session Types

Revisiting Bit Flipping

1. bitsflip uses unary labelled choice

The Meaning of Specifications

The Meaning of Specifications

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

7

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

What Do Process Specifications And Types Mean?

1. Given inputs allowed by I, P may produce outputs allowed by O.
2. We have a good understanding of this when everything is static, but what
happens with type-level computation?

3. Unsatisfying to just have syntax.
4. Need to first answer: what is the meaning of a type.
5. Classical session types are static and denote a set of allowed
communications (OCS).

6. With CDST, think of types and specifications as programs whose executions
generate all communications they allow.

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

7

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

What Do Process Specifications And Types Mean?

1. Given inputs allowed by I, P may produce outputs allowed by O.
2. We have a good understanding of this when everything is static, but what
happens with type-level computation?

3. Unsatisfying to just have syntax.
4. Need to first answer: what is the meaning of a type.
5. Classical session types are static and denote a set of allowed
communications (OCS).

6. With CDST, think of types and specifications as programs whose executions
generate all communications they allow.

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

7

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

What Do Process Specifications And Types Mean?

1. Given inputs allowed by I, P may produce outputs allowed by O.
2. We have a good understanding of this when everything is static, but what
happens with type-level computation?

3. Unsatisfying to just have syntax.
4. Need to first answer: what is the meaning of a type.
5. Classical session types are static and denote a set of allowed
communications (OCS).

6. With CDST, think of types and specifications as programs whose executions
generate all communications they allow.

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

7

What Do Process Specifications And Types Mean?

Typing judgments I ` P :: O specify P’s communication behaviour.

What does this specification mean when types involve computation?

What do types with computation even mean?

Classical Session Type Channel-Dependent Type
Set of allowed
communications

Program that computes
allowed communications

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

What Do Process Specifications And Types Mean?

1. Given inputs allowed by I, P may produce outputs allowed by O.
2. We have a good understanding of this when everything is static, but what
happens with type-level computation?

3. Unsatisfying to just have syntax.
4. Need to first answer: what is the meaning of a type.
5. Classical session types are static and denote a set of allowed
communications (OCS).

6. With CDST, think of types and specifications as programs whose executions
generate all communications they allow.

Session Types Are Non-Deterministic Processes

Core Ideas

1. A session type is a non-deterministic process that asynchronously
broadcasts communications.

2. The communications it allows are those it can broadcast.

A specification I ` P :: O means that P must

1. accept all communications I can broadcast
2. send only communications O can broadcast given those so far
broadcast by I,O

8

Session Types Are Non-Deterministic Processes

Core Ideas

1. A session type is a non-deterministic process that asynchronously
broadcasts communications.

2. The communications it allows are those it can broadcast.

A specification I ` P :: O means that P must

1. accept all communications I can broadcast
2. send only communications O can broadcast given those so far
broadcast by I,O

20
22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

Session Types Are Non-Deterministic Processes

1. Make the idea that types/specs are programs that compute allowed
communications a bit more explicit.

2. Interpret types as processes that observe and generate communications
3. Broadcast means processes send messages to everybody
4. Asynchronously means that processes don’t need to synchronize to send:
just send, and others will receive when they are ready

Session Types Are Non-Deterministic Processes

Core Ideas

1. A session type is a non-deterministic process that asynchronously
broadcasts communications.

2. The communications it allows are those it can broadcast.

A specification I ` P :: O means that P must

1. accept all communications I can broadcast
2. send only communications O can broadcast given those so far
broadcast by I,O

8

Session Types Are Non-Deterministic Processes

Core Ideas

1. A session type is a non-deterministic process that asynchronously
broadcasts communications.

2. The communications it allows are those it can broadcast.

A specification I ` P :: O means that P must

1. accept all communications I can broadcast
2. send only communications O can broadcast given those so far
broadcast by I,O20

22
-0
5-
19 Channel-Dependent Session Types

The Meaning of Specifications

Session Types Are Non-Deterministic Processes

1. Make the idea that types/specs are programs that compute allowed
communications a bit more explicit.

2. Interpret types as processes that observe and generate communications
3. Broadcast means processes send messages to everybody
4. Asynchronously means that processes don’t need to synchronize to send:
just send, and others will receive when they are ready

Design Choices and Challenges

Design Choices and Challenges

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Dependency Condition

Type-level dependency can only restrict output.
It never restricts input.

Example (Permitted)

i : (l ⦂ A)⊕ (r ⦂ B), j : . . . ` P :: o : CASE i {l⇒ . . . | r⇒ . . .}

9

Dependency Condition

Type-level dependency can only restrict output.
It never restricts input.

Example (Permitted)

i : (l ⦂ A)⊕ (r ⦂ B), j : . . . ` P :: o : CASE i {l⇒ . . . | r⇒ . . .}

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Dependency Condition

1. Makes no sense to use local information to restrict what you receive.
2. Postel’s Law: conservative in what you send, liberal in what you accept.
3. This condition has important ramifications on process composition.

Dependency Condition

Type-level dependency can only restrict output.
It never restricts input.

Example (Permitted)

i : (l ⦂ A)⊕ (r ⦂ B), j : . . . ` P :: o : CASE i {l⇒ . . . | r⇒ . . .}

9

Dependency Condition

Type-level dependency can only restrict output.
It never restricts input.

Example (Permitted)

i : (l ⦂ A)⊕ (r ⦂ B), j : . . . ` P :: o : CASE i {l⇒ . . . | r⇒ . . .}

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Dependency Condition

1. Makes no sense to use local information to restrict what you receive.
2. Postel’s Law: conservative in what you send, liberal in what you accept.
3. This condition has important ramifications on process composition.

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A a : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

10

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A a : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition vs Session Fidelity

1. Explain process composition: parallel composition, and then hide channel
from external view.

2. Session fidelity is the property that a process is never sent a
communication it cannot handle.

3. Often ensured in part by only composing channels of equal / dual type.
4. Requiring channels of equal type means that we cannot compose channels
if one has dependency.

5. If we cannot compose processes, then what’s the point?
6. Want to be able to determine this statically.

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

10

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition vs Session Fidelity

1. Explain process composition: parallel composition, and then hide channel
from external view.

2. Session fidelity is the property that a process is never sent a
communication it cannot handle.

3. Often ensured in part by only composing channels of equal / dual type.
4. Requiring channels of equal type means that we cannot compose channels
if one has dependency.

5. If we cannot compose processes, then what’s the point?
6. Want to be able to determine this statically.

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

10

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition vs Session Fidelity

1. Explain process composition: parallel composition, and then hide channel
from external view.

2. Session fidelity is the property that a process is never sent a
communication it cannot handle.

3. Often ensured in part by only composing channels of equal / dual type.
4. Requiring channels of equal type means that we cannot compose channels
if one has dependency.

5. If we cannot compose processes, then what’s the point?
6. Want to be able to determine this statically.

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?

10

Process Composition vs Session Fidelity

Process composition = “plugging channels together”:

P Qa : A

Problem
Session fidelity requires channel be composed at compatible types. When
are channel-dependent session types compatible?20

22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition vs Session Fidelity

1. Explain process composition: parallel composition, and then hide channel
from external view.

2. Session fidelity is the property that a process is never sent a
communication it cannot handle.

3. Often ensured in part by only composing channels of equal / dual type.
4. Requiring channels of equal type means that we cannot compose channels
if one has dependency.

5. If we cannot compose processes, then what’s the point?
6. Want to be able to determine this statically.

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Q

11

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Q

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Session Sorting

1. Session sorting is an abstraction akin to subtyping or dependency erasure
2. Those familiar with session subtyping: sorting is basically an extension of
Gay and Hole style subtyping to handle case constructs.

3. Provides a dependency free upper bound on what A allows.
4. Call the non-dependent S the sort of A.
5. Can compose channel of type A with one of type S when A : S.
6. Inspiration for treatment of composition from Griffith’s thesis.

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Qa : A a : S

11

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Qa : A a : S

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Session Sorting

1. Session sorting is an abstraction akin to subtyping or dependency erasure
2. Those familiar with session subtyping: sorting is basically an extension of
Gay and Hole style subtyping to handle case constructs.

3. Provides a dependency free upper bound on what A allows.
4. Call the non-dependent S the sort of A.
5. Can compose channel of type A with one of type S when A : S.
6. Inspiration for treatment of composition from Griffith’s thesis.

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Qa : A <: S

11

Session Sorting

Type-level dependency restricts what processes send.

Definition (Session Sorting)

Write A <: S when the type A is a restriction of the (non-dependent)
session type S.

Compose a : A and a : S only when A <: S:

P Qa : A <: S

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Session Sorting

1. Session sorting is an abstraction akin to subtyping or dependency erasure
2. Those familiar with session subtyping: sorting is basically an extension of
Gay and Hole style subtyping to handle case constructs.

3. Provides a dependency free upper bound on what A allows.
4. Call the non-dependent S the sort of A.
5. Can compose channel of type A with one of type S when A : S.
6. Inspiration for treatment of composition from Griffith’s thesis.

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits

12

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition with Session Sorting

1. Sorting for cases analogous to typing for case statements in functional
languages.

2. bitsFlip is of sort bits because each branch is of sort bits: it is a restriction
of the sort bits

3. Lots of other cool design challenges with composition that I’d be happy to
talk about offline.

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits c : bitsFlip

c : bits

12

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits c : bitsFlip

c : bits20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition with Session Sorting

1. Sorting for cases analogous to typing for case statements in functional
languages.

2. bitsFlip is of sort bits because each branch is of sort bits: it is a restriction
of the sort bits

3. Lots of other cool design challenges with composition that I’d be happy to
talk about offline.

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits

12

Process Composition with Session Sorting

Recall the bit stream and bit flipping protocols:

bits = (b0 ⦂ bits)⊕ (b1 ⦂ bits)
bitsFlip = CASE i {b0⇒ (b1 ⦂ bitsFlip)

| b1⇒ (b0 ⦂ bitsFlip)}

bitsFlip <: bits means that we can compose along c:

i : bits

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Process Composition with Session Sorting

1. Sorting for cases analogous to typing for case statements in functional
languages.

2. bitsFlip is of sort bits because each branch is of sort bits: it is a restriction
of the sort bits

3. Lots of other cool design challenges with composition that I’d be happy to
talk about offline.

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

13

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Related Work

1. VDST: depend on values from same channel. Invariants captured by sending
proof terms. T/C/P 2011

2. LDST: TV19. Treat labels as first class objects. Types do a case analysis on
labels sent on same channel.

3. LDST: Original motivation was to disentangle communication from
introducing and eliminating values.

4. VDST/LDST: dependency only on same channel.
5. MPST: can globally specify interactions. Very rich but very complex. Typically
closed world, hard to extend with new processes.

6. Stolze, Miculan, Di Gianantonio 2021 worked on extending MPST with new
process composition.

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

13

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Related Work

1. VDST: depend on values from same channel. Invariants captured by sending
proof terms. T/C/P 2011

2. LDST: TV19. Treat labels as first class objects. Types do a case analysis on
labels sent on same channel.

3. LDST: Original motivation was to disentangle communication from
introducing and eliminating values.

4. VDST/LDST: dependency only on same channel.
5. MPST: can globally specify interactions. Very rich but very complex. Typically
closed world, hard to extend with new processes.

6. Stolze, Miculan, Di Gianantonio 2021 worked on extending MPST with new
process composition.

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

13

Related Work

• Value-dependent session types: session types depend on transmitted
values.

• Label-dependent session types: session types depend on transmitted
labels.

• Multi-party session types provide a rich notion of process
specification, but are quite complex.

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Related Work

1. VDST: depend on values from same channel. Invariants captured by sending
proof terms. T/C/P 2011

2. LDST: TV19. Treat labels as first class objects. Types do a case analysis on
labels sent on same channel.

3. LDST: Original motivation was to disentangle communication from
introducing and eliminating values.

4. VDST/LDST: dependency only on same channel.
5. MPST: can globally specify interactions. Very rich but very complex. Typically
closed world, hard to extend with new processes.

6. Stolze, Miculan, Di Gianantonio 2021 worked on extending MPST with new
process composition.

Future Work

• Adapt the type system to guarantee deadlock freedom
• Integrate with other forms of dependency like value- and
label-dependency

• Find a logical interpretation
• Prove subject reduction
• Implement channel-dependent session types!

14

Future Work

• Adapt the type system to guarantee deadlock freedom
• Integrate with other forms of dependency like value- and
label-dependency

• Find a logical interpretation
• Prove subject reduction
• Implement channel-dependent session types!

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Future Work

Thank You

Take away
Channel-dependent session types use restricted type-level concurrent
computation to capture more precise communication invariants.

15

Thank You

Take away
Channel-dependent session types use restricted type-level concurrent
computation to capture more precise communication invariants.

20
22
-0
5-
19 Channel-Dependent Session Types

Design Choices and Challenges

Thank You

Temporal-Causal Invariants

S
db1

db2
o : D

d1 : D

d2 : D

D = (ok ⦂ D)⊕ (err ⦂ D)

M = CASE d1 {ok ⇒ CASE d2 {ok⇒ (ok ⦂M)
| err⇒ (err ⦂M)}

| err⇒ CASE d2 {ok⇒ (err ⦂M)
| err⇒ (err ⦂M)}}

Temporal-Causal Invariants

S
db1

db2
o : D

d1 : D

d2 : D

D = (ok ⦂ D)⊕ (err ⦂ D)

M = CASE d1 {ok ⇒ CASE d2 {ok⇒ (ok ⦂M)
| err⇒ (err ⦂M)}

| err⇒ CASE d2 {ok⇒ (err ⦂M)
| err⇒ (err ⦂M)}}

20
22
-0
5-
19 Channel-Dependent Session Types

Temporal-Causal Invariants

1. Backup slide
2. The bit flipping example captures information flow.
3. We can also use type-level computation to describe temporal and causal
invariants.

4. Want to observe ok on o only if both databases successfully committed
their data.

5. Particularly useful in bidirectional settings where we can delegate
communication: lets us specify how our delegates communicate.

Temporal-Causal Invariants

S
db1

db2
o : M

d1 : D

d2 : D

D = (ok ⦂ D)⊕ (err ⦂ D)
M = CASE d1 {ok ⇒ CASE d2 {ok⇒ (ok ⦂M)

| err⇒ (err ⦂M)}
| err⇒ CASE d2 {ok⇒ (err ⦂M)

| err⇒ (err ⦂M)}}

Temporal-Causal Invariants

S
db1

db2
o : M

d1 : D

d2 : D

D = (ok ⦂ D)⊕ (err ⦂ D)
M = CASE d1 {ok ⇒ CASE d2 {ok⇒ (ok ⦂M)

| err⇒ (err ⦂M)}
| err⇒ CASE d2 {ok⇒ (err ⦂M)

| err⇒ (err ⦂M)}}

20
22
-0
5-
19 Channel-Dependent Session Types

Temporal-Causal Invariants

1. Backup slide
2. The bit flipping example captures information flow.
3. We can also use type-level computation to describe temporal and causal
invariants.

4. Want to observe ok on o only if both databases successfully committed
their data.

5. Particularly useful in bidirectional settings where we can delegate
communication: lets us specify how our delegates communicate.

	The Meaning of Specifications
	Design Choices and Challenges
	Appendix

