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Communicating Systems and Session Types

1. Communicating systems are ubiquitous
2. To work, every component must communicate with the others according to
rules called protocols

3. Failure to do so can lead to vulnerabilities like Heartbleed
4. Caused by failure to implement TLS Heartbeat protocol extension.
5. Estimated cost to industry: over $500 million
6. Session-typed languages can help
7. Analogous to data types, but for communication
8. Today’s talk: How to capture more expressive protocols
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Processes and Session-Typed Channels

1. Think process as black boxes communicating over wires.
2. Wires are called “channels”; communication should respect a protocol.
3. The protocol specifies what kind of message can be transmitted next.
4. Protocols evolve over the course of communication to allow for different
kinds of messages.

5. Make clear that channels and protocols are different.
6. In general, communication is bidirectional, but today, assume left to right.
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Bit Streams

1. Recurring example throughout this talk — bit streams
2. We can also deal with more interesting features like queues and stacks or
channel transmission, but bit streams are useful for illustrating key features.

3. Protocol specifies what communications can be sent on a channel.
4. A communication is a sequence of messages.
5. This is a recursive protocol.
6. Send a bit, and then say that the remainder of the communication will
follow the bits protocol: protocols change
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Flipping Bits

1. The bit flipping process F uses the input channel i that satisfies bits, and
provides an output channel o that satisfies bits.

2. i and o are channel names; bits is the protocol
3. We can think of the typing judgment as a spec for F.
4. The typing judgment isn’t very precise: the identity function satisfies the
same specification.

5. EMPHASIZE MULTITUDE OF DIFFERENT PROCESSES
6. Want to make typing judgments capture more precise invariants relating
input and output.

7. Treat session types as processes that can observe communications to
produce more precise specifications.
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CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

5

Extending Session Types With Observing Processes

A,B := · · · other session types
| (l ⦂ A)⊕ (r ⦂ B) labelled choice

| CASE c {l⇒ A | r⇒ B} label observation

Operational Intuition
CASE c {l⇒ A | r⇒ B} ≡ A if l observed on channel c
CASE c {l⇒ A | r⇒ B} ≡ B if r observed on channel c

20
22
-0
5-
19 Channel-Dependent Session Types

Extending Session Types With Observing Processes

1. Only giving syntax for binary choice, but assume it for any finite arity
2. Use definitional equality to capture type-level computation
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broadcasts communications.
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4. Asynchronously means that processes don’t need to synchronize to send:
just send, and others will receive when they are ready
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1. Explain process composition: parallel composition, and then hide channel
from external view.

2. Session fidelity is the property that a process is never sent a
communication it cannot handle.

3. Often ensured in part by only composing channels of equal / dual type.
4. Requiring channels of equal type means that we cannot compose channels
if one has dependency.

5. If we cannot compose processes, then what’s the point?
6. Want to be able to determine this statically.
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1. Session sorting is an abstraction akin to subtyping or dependency erasure
2. Those familiar with session subtyping: sorting is basically an extension of
Gay and Hole style subtyping to handle case constructs.

3. Provides a dependency free upper bound on what A allows.
4. Call the non-dependent S the sort of A.
5. Can compose channel of type A with one of type S when A : S.
6. Inspiration for treatment of composition from Griffith’s thesis.
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1. Sorting for cases analogous to typing for case statements in functional
languages.

2. bitsFlip is of sort bits because each branch is of sort bits: it is a restriction
of the sort bits

3. Lots of other cool design challenges with composition that I’d be happy to
talk about offline.
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Related Work

1. VDST: depend on values from same channel. Invariants captured by sending
proof terms. T/C/P 2011

2. LDST: TV19. Treat labels as first class objects. Types do a case analysis on
labels sent on same channel.

3. LDST: Original motivation was to disentangle communication from
introducing and eliminating values.

4. VDST/LDST: dependency only on same channel.
5. MPST: can globally specify interactions. Very rich but very complex. Typically
closed world, hard to extend with new processes.

6. Stolze, Miculan, Di Gianantonio 2021 worked on extending MPST with new
process composition.
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1. VDST: depend on values from same channel. Invariants captured by sending
proof terms. T/C/P 2011

2. LDST: TV19. Treat labels as first class objects. Types do a case analysis on
labels sent on same channel.

3. LDST: Original motivation was to disentangle communication from
introducing and eliminating values.

4. VDST/LDST: dependency only on same channel.
5. MPST: can globally specify interactions. Very rich but very complex. Typically
closed world, hard to extend with new processes.

6. Stolze, Miculan, Di Gianantonio 2021 worked on extending MPST with new
process composition.
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Temporal-Causal Invariants

1. Backup slide
2. The bit flipping example captures information flow.
3. We can also use type-level computation to describe temporal and causal
invariants.

4. Want to observe ok on o only if both databases successfully committed
their data.

5. Particularly useful in bidirectional settings where we can delegate
communication: lets us specify how our delegates communicate.
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