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An observed communication semantics for session-typed
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A notion of fairness for multiset rewriting systems.

e Sufficient conditions for a fair scheduler
e Associated reasoning principles

e Various properties of fair traces
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Communicating Processes

@l s A1
: P @ o AO
c, A,
Uges PrO\;ides

Abbreviate as:

AL, G AE P A (n>0)
AFP:c: A

where A =c¢; : Aq,...,c, 1 A,



What Can We Observe?

Key principle: We can only interact with processes through

communication.

Corollary: Communications are the only semantically
meaningful observables.
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The observation of a process
c1: A, ..., AnE P iicot Ay is the (n+ 1)-tuple

(cr:A1,..., e AnE P oAl =(co:vo,---\Cn: Vi)

where vy, ..., v, are the communications observed on
the free channels ¢, . . ., c,.

Two processes AP :a:Aand AFQ:a:Aare
observationally congruent if for all A"+ C[-] :: b: B,

(A"F C[P] = b:B) = (A" C[Q] :: b: B).
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Sending A Bit Stream

bl1bObl:--
_—

S

i:bits

F fix S in i.b1; 1.b0; S :: i : bits

Observation:

(FS:i:bits) =(i: (b1, (b0, (b1, (---)))))
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Flipping Bits
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i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Observation:

(i:pitskFF:o:bits) = (i: Lpits, 0 Lpits)
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Composing Processes

We can compose processes

FS :: 1 : bits
i : bits F F :: o : bits

to get the process i :bits < S;F: o:bits

bODbl ---
_ >
i:bits

b1b0 ---
_—

S I3

Observation:

(Fi:bits <« S;F:o:bits) = (o: (b1, (00, (b1, (--+)))))
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Buffering and Equivalence

Consider an alternate implementation BuffF of F that buffers
input and processes bits two at a time.

(F i:Dbits < S;BuffF :: o : bits)

= (0: (b1, (0, (b1, (---)))))

= (Fi:bits <« S;F: o:bits)

Let O send just one bit: - i.bl;fix w in w:: i: bits.
(F i:Dbits < 0;BuffF :: o: bits)
= (01 Lpits)
# (0 : (b0, Lysts))
= (Fi:bits < 0;F:o0:bits).

BuffF and F are not observationally congruent!



Other Protocols

External choice: &{/: A/}icL
Channel transmission: A® B and A — B
Synchronization: T Aand | A

Functional value transmission: TAAand 7 D A

10
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Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).
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Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).

Fwe Three kinds of judgments in the multisets:

1. proc(c, P): process P provides channel c;

2. msg(c, m; c <— d): channel ¢ carries a message m with
continuation channel d:

msg(c1, my; €1 < &), msg(ca, Ma; ¢ < G3),

msg(cs, m3; C3 < C4), . . .

3. type(c : A): channel ¢ has type A

11



Example Multiset Rewrite Rules

Unfolding recursive processes:

proc(c,fix p in P) — proc(c, [fix p in P/p]P)
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Example Multiset Rewrite Rules

Unfolding recursive processes:

proc(c,fix p in P) — proc(c, [fix p in P/p]P)

Sending labels:

proc(c, c.k; P), type(c : ®{1 : A1 }1e1) —
Jd.msg(c, c.k; ¢ < d), proc(d, [d/c]P), type(d : Ax)

Receiving labels:

msg(c, c.k; c < d), proc(e, case ¢ {1 = P;}) — proc(e, [d/c]|Px)

12



Executions

An execution of a process ¢; : Ay, ..., c,: Ay F P g Agis
a maximal trace starting from

type(co : Ao), - .-, type(c, : A,), proc(co, P).

13



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

14



Example Execution: Sending Streams

b1 bo--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(0, 0.b1; 0 < 01), proc(o4,04.b0; fix S in 04.b1; 04.b0; S)

14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(0,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)

14



Example Execution: Sending Streams

b1 bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0, 0.b1; 0 ¢ 04), msg(04,01.b0; 04 < 03),

proc(o,fix S in 0,.b1; 05.00; S)

14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0,0.b1;0 < 01), msg(04,04.b0; 04 < 03),

proc(0g,fix S in 05.b1; 05.b0; S)

14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)
— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0,0.b1;0 < 01), msg(04,04.b0; 04 < 03),
proc(o,fix S in 0,.b1; 05.00; S)
— msg(0,0.b1;0 < 01), msg(o04,01.b0; 04 < 03),

proc(0g, 05.b1; 02.00; fix S in 05.b1; 0,.b0; S)
14



Example Execution: Sending Streams

b1bO--- )
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)
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Session-Typed Communications
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Session-Typed Communications

A session-typed communication is a (potentially infinite)
tree v generated by the grammar:

vi=lal(k,v)|(v,V)]--
They are associated to session types by rules, e.g.,

Vi € Ak
Lopaye € DU Aher (kyvi) e ®{1: Ar}iee

Given a trace T, the judgment T ~» v e A / ¢ means we
observed a session-typed communication v of type A on
channel cin T.

It is coinductively defined using the union of multisets in T
(without repetitions).

ii5)



From Traces to Observed Communications

The observation of a process
a1 A, AnE Piico i Agis the (n+ 1)-tuple

(c1: A1, ..., AnEPiico:Ad) =(co: v,y Cni V)

where T~ vie A; /¢ for 0 < i < n.

Problems. Are observations unique? Does it make sense for
it to be unique? What about unfair executions?

16



Unfair Executions: Pathological Example

Let L = @&{/: L}, and let Q and B respectively be

F fix w in w ira A
a:AFfixpinc.l; p :: c : L
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Unfair Executions: Pathological Example

Let L = @&{/: L}, and let Q and B respectively be

F fix w in w ira A
a:AFfixpinc.l; p :: c : L

We can compose them to get:

Fa:A+«Q;B::c

- n C

An observation is a tuple (c : v) where v ¢ L.

17



Fairness for Multiset Rewriting

Systems



Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(x) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).
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Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(X) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).

A multiset rewriting system is a set of
multiset rewrite rules.

Given some C, a rule instantiation
r(€) : F(€) — 3n.G(c, n)
is applicable to M if M = F(¢), M".

The result of applying r(¢) to M is G(&,d), M', where d are
fresh constants. Write M “E9, G(é d), M.

18



A trace is a sequence of multisets related by rule applications:

(rii(&,dh) (r2i(&,2)) (ri(c,d3))

MO ) M1 > M2

where at each step the d. are globally fresh.

19



A trace is a sequence of multisets related by rule applications:

M @A),y (@A), (@),

where at each step the d. are globally fresh.

It is (liber) fair if for r € R, ¢, and i, if r(C) is applicable to
M;, then there exists a j > i such that r(c) = r;(c)).

19



Interference-Freedom

An MRS is interference-free on M, if, where

ri(¢i), ..., r(c,) are the rule instantiations applicable to Mj,
then all possible application orderings are valid and result in
the same multiset.

20



Interference-Freedom

An MRS is interference-free on M, if, where

ri(¢i), ..., r(c,) are the rule instantiations applicable to Mj,
then all possible application orderings are valid and result in
the same multiset.

It is interference-free from M, if for each trace from Mj, it
is interference-free on each M; in the trace.

20



Non-Overlapping MRSs

Proposition

Consider rules r; : VX;.Fi(X;) — 3n;.Gi(x;, ;).

If Fi(c1), ..., Fu(C,) are “non-overlapping” M, then the rules
are interference-free on M.

Example

The rules for session-typed processes are non-overlapping on
every multiset in a process trace.

21



Interference-Freedom: Fair Scheduler

Proposition

If an MRS is interference-free on My, then there exists a fair
maximal trace from M.

22



Consider a trace T (indexed by i € /)

(r1:(G1,dh) (ra; (52,672))\ (r3:(G3,d3)) o

MO ) Ml M2

Given a permutation o of /, a sequence o - T

(ro(2)i(Er(2),d0(2)))
/ /
Ml M2

is called a permutation of T if it is also a trace.

23



Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.
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Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from
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Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from
M are permutations of each other.

Corollary

All fair executions of a session-typed process are permutations
of each other.

24



Union-Equivalence

Two traces
Mo (fl;(fhdl))/ M, (f2:(52,52))/ M, (r3:(53,£73))/
N (rf:(&.d; ))/ N, (r}:(85,d3)) N, (r3 (ngd’))

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).
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Two traces

(r2:(&,db)) (r3:(&,d5))

s M, ..
()

(r}:(&.d )){ N, (r§i(&5,db)) N,

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).
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If an MRS is interference-free from M, then all fair traces from
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Union-Equivalence

Two traces
Mo (fl;(fhdl))/ M, (f2:(52,52))/ M, (r3:(53,£73))/
N (rf:(&.d; ))/ N, (r}:(85,d3)) N, (r3 (ngd’))

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).
Theorem

If an MRS is interference-free from M, then all fair traces from
M are union-equivalent.

Corollary

All fair executions of a session-typed process are
union-equivalent.

25



Unique Observations for Processes

Recall that observations are defined in terms of the union of
the supports of the multisets in a process execution.

If we restrict our attention fair executions,
then every process has a unique observation!

26
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This work is still in its early stages!

e Relate the operational observation to a
domain-theoretic denotational semantics

e Relate to existing notions of operational observation and
equivalence: barbed congruence, bisimulation, etc.
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Buffered Bit Flipping

i : bits + fix F in case i

{ b0 =>case i { b0 => 0.bl; 0.bl; F

| bl => 0.bl; 0.b0; F }
| bl => case 1 { b0 => 0.b0; o0.bl; F

| bl => 0.b0; 0.b0; F }

2 0 : bits

[back]
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