Substructural Observed
Communication Semantics

Ryan Kavanagh
EXPRESS/SOS 2020

Carnegie Mellon University

Contributions

An observed communication semantics for session-typed
languages with recursion that are specified by substructural
operational semantics (multiset rewriting systems).

Contributions

An observed communication semantics for session-typed
languages with recursion that are specified by substructural
operational semantics (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

e Sufficient conditions for a fair scheduler
e Associated reasoning principles

e Various properties of fair traces

Communicating Processes

C A1 —
: [—— o A
Cp: Ay —
Where
e ¢; — channel name
e A; — protocol (session type) for channel ¢;

e P — process

Communicating Processes

C A1 —
: [—— o A
Cp: Ay —
Uses Provides
Where
e ¢; — channel name
e A; — protocol (session type) for channel ¢;

e P — process

Communicating Processes

@l s A1
: P @ o AO
c, A,
Uges PrO\;ides

Abbreviate as:

AL, G AE P A (n>0)
AFP:c: A

where A =c¢; : Aq,...,c, 1 A,

What Can We Observe?

Key principle: We can only interact with processes through

communication.

Corollary: Communications are the only semantically
meaningful observables.

Observed Communication

Semantics, Informally

Observed Communication Semantics, Informally

The observation of a process
c1: A, ..., AnE P iicot Ay is the (n+ 1)-tuple

(cr:A1,..., e AnE P oAl =(co:vo,---\Cn: Vi)

where vy, ..., v, are the communications observed on
the free channels ¢, . . ., c,.

Observed Communication Semantics, Informally

The observation of a process
c1: A, ..., AnE P iicot Ay is the (n+ 1)-tuple

(cr:A1,..., e AnE P oAl =(co:vo,---\Cn: Vi)

where vy, ..., v, are the communications observed on
the free channels ¢, . . ., c,.

Two processes AP :a:Aand AFQ:a:Aare
observationally congruent if for all A"+ C[-] :: b: B,

(A"F C[P] = b:B) = (A" C[Q] :: b: B).

Bit Stream Protocol

Bit stream protocol:

bits = (b0 : bits) @ (bl : bits)

Example communications satisfying bits:

bOb1bObLO---

Y

Co : bits

bl
c1 : bits

Y

Y

¢ bits

Bit Stream Protocol

Bit stream protocol:

bits = (b0 : bits) @ (bl : bits)

Example communications satisfying bits:

bOb1bObLO--- .

> Cp : bits
bl L

> C; . bits
1L

Y

¢ bits

Sending A Bit Stream

bl1bObl:--
_—

S

i:bits

F fix S in i.b1; 1.b0; S :: i : bits

Sending A Bit Stream

bl1bObl:--
T

S

i:bits

F fix S in i.b1l; 1.b0; S :: i : bits

Sending A Bit Stream

b1 bObl---

S

i:bits

F fix S in i.b1; i.b0; S :: i : bits

Sending A Bit Stream

bl1bObl:--
——

S

i:bits

F fix S in i.b1; 1.b0; S :: i : bits

Sending A Bit Stream

b1b0Obl:--
——

S

i:bits

F fix S in i.b1l; 1.b0; S :: i : bits

Sending A Bit Stream

bl1bObl:--
_—

S

i:bits

F fix S in i.b1; 1.b0; S :: i : bits

Observation:

(FS:i:bits) =(i: (b1, (b0, (b1, (---)))))

Flipping Bits

bOb1bO--- bl1bObl.--
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOb1bO--- bl1bObl.--
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOb1bO--- bl1bObl.--
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 =>o0.bl; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOb1bO--- bl1bObl.-.
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > .

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > .

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bObl1bO--- bl1bObl.--
_ > .

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > .

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| b1 => 0.b0; F } :: o : bits

Flipping Bits

bObl1bO--- b1bObl.-.
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| b1 => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > _ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > _ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > _ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOb1bO--- bl1bObl. -
_ >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Flipping Bits

bOblbO--- bl1bObl.--
_ > _— >

F

i:bits o:bits

i : bits F fix F in case i
{ b0 => 0.b1; F
| bl => 0.b0; F } :: o : bits

Observation:

(i:pitskFF:o:bits) = (i: Lpits, 0 Lpits)

Composing Processes

We can compose processes

FS :: 1 : bits
i : bits F F :: o : bits

to get the process i :bits < S;F: o:bits

I3

i:bits

Composing Processes

We can compose processes

FS :: 1 : bits
i : bits F F :: o : bits

to get the process i :bits < S;F: o:bits

bODbl ---
_ >
i:bits

b1b0 ---
_—

S I3

Composing Processes

We can compose processes

FS :: 1 : bits
i : bits F F :: o : bits

to get the process i :bits < S;F: o:bits

bODbl ---
_ >
i:bits

b1b0 ---
_—

S I3

Observation:

(Fi:bits <« S;F:o:bits) = (o: (b1, (00, (b1, (--+)))))

Buffering and Equivalence

Consider an alternate implementation BuffF of F that buffers
input and processes bits two at a time.

(F1i:bits « S;BuffF : o:bits)

= (0: (b1, (0, (b1, (---)))))

= (Fi:bits <« S;F: o:bits)

Buffering and Equivalence

Consider an alternate implementation BuffF of F that buffers
input and processes bits two at a time.

(F i:Dbits < S;BuffF :: o : bits)

= (0: (b1, (0, (b1, (---)))))

= (Fi:bits <« S;F: o:bits)

Let O send just one bit: - i.bl;fix w in w:: i: bits.
(F i:Dbits < 0;BuffF :: o: bits)
= (01 Lpits)
(0 : (b0, Lysts))
= (Fi:bits < 0;F:o0:bits).

BuffF and F are not observationally congruent!

Other Protocols

External choice: &{/: A/}icL
Channel transmission: A® B and A — B
Synchronization: T Aand | A

Functional value transmission: TAAand 7 D A

10

Observed Communication

Semantics, More Formally

Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).

11

Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).

Two kinds of judgments in the multisets:

1. proc(c, P): process P provides channel c;

11

Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).

Two kinds of judgments in the multisets:

1. proc(c, P): process P provides channel c;

2. msg(c, m; c <— d): channel ¢ carries a message m with
continuation channel d:

msg(c1, my; €1 < &), msg(ca, Ma; ¢ < G3),

msg(cs, m3; C3 < C4), . . .

11

Substructural Operational Semantics

Languages are specified by a substructural operational
semantics (a multiset rewriting system).

Fwe Three kinds of judgments in the multisets:

1. proc(c, P): process P provides channel c;

2. msg(c, m; c <— d): channel ¢ carries a message m with
continuation channel d:

msg(c1, my; €1 < &), msg(ca, Ma; ¢ < G3),

msg(cs, m3; C3 < C4), . . .

3. type(c : A): channel ¢ has type A

11

Example Multiset Rewrite Rules

Unfolding recursive processes:

proc(c,fix p in P) — proc(c, [fix p in P/p]P)

12

Example Multiset Rewrite Rules

Unfolding recursive processes:

proc(c,fix p in P) — proc(c, [fix p in P/p]P)

Sending labels:

proc(c, c.k; P), type(c : ®{1 : A1 }1e1) —
Jd.msg(c, c.k; ¢ < d), proc(d, [d/c]P), type(d : Ax)

12

Example Multiset Rewrite Rules

Unfolding recursive processes:

proc(c,fix p in P) — proc(c, [fix p in P/p]P)

Sending labels:

proc(c, c.k; P), type(c : ®{1 : A1 }1e1) —
Jd.msg(c, c.k; ¢ < d), proc(d, [d/c]P), type(d : Ax)

Receiving labels:

msg(c, c.k; c < d), proc(e, case ¢ {1 = P;}) — proc(e, [d/c]|Px)

12

Executions

An execution of a process ¢; : Ay, ..., c,: Ay F P g Agis
a maximal trace starting from

type(co : Ao), - .-, type(c, : A,), proc(co, P).

13

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

14

Example Execution: Sending Streams

b1 bo---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(0, 0.b1; 0 < 01), proc(o4,04.b0; fix S in 04.b1; 04.b0; S)

14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(0,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)

14

Example Execution: Sending Streams

b1 bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0, 0.b1; 0 ¢ 04), msg(04,01.b0; 04 < 03),

proc(o,fix S in 0,.b1; 05.00; S)

14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)

— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)

— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0,0.b1;0 < 01), msg(04,04.b0; 04 < 03),

proc(0g,fix S in 05.b1; 05.b0; S)

14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)
— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0,0.b1;0 < 01), msg(04,04.b0; 04 < 03),
proc(o,fix S in 0,.b1; 05.00; S)
— msg(0,0.b1;0 < 01), msg(o04,01.b0; 04 < 03),

proc(0g, 05.b1; 02.00; fix S in 05.b1; 0,.b0; S)
14

Example Execution: Sending Streams

b1bO---)
o : bits

proc(o,fix S in 0.b1; 0.b0; S)
— proc(o, 0.b1;0.b0; fix S in 0.b1;0.b0;S)
— msg(o,0.b1;0 < 04), proc(oy,04.b0; fix S in 04.b1; 04.b0; S)
— msg(0,0.b1;0 < 01), msg(04,04.b0; 04 < 03),
proc(o,fix S in 0,.b1; 05.00; S)
— msg(0,0.b1;0 < 01), msg(o04,01.b0; 04 < 03),

proc(0g, 05.b1; 05.00; fix S in 05.b1; 0,.b0; S)
14

Session-Typed Communications

A session-typed communication is a (potentially infinite)
tree v generated by the grammar:

vi=lal(k,v)|(v,V)]--
They are associated to session types by rules, e.g.,

Vi € Ak
Lopaye € OU At (kovi) e {1 Ai}ier

ii5)

Session-Typed Communications

A session-typed communication is a (potentially infinite)
tree v generated by the grammar:

vi=lal(k,v)|(v,V)]--
They are associated to session types by rules, e.g.,

Vi € Ak
Lopaye € DU Aher (kyvi) e ®{1: Ar}iee

Given a trace T, the judgment T ~» v e A / ¢ means we
observed a session-typed communication v of type A on
channel cin T.

It is coinductively defined using the union of multisets in T
(without repetitions).

ii5)

From Traces to Observed Communications

The observation of a process
a1 A, AnE Piico i Agis the (n+ 1)-tuple

(c1: A1, ..., AnEPiico:Ad) =(co: v,y Cni V)

where T~ vie A; /¢ for 0 < i < n.

Problems. Are observations unique? Does it make sense for
it to be unique? What about unfair executions?

16

Unfair Executions: Pathological Example

Let L = @&{/: L}, and let Q and B respectively be

F fix w in w ira A
a:AFfixpinc.l; p :: c : L

17

Unfair Executions: Pathological Example

Let L = @&{/: L}, and let Q and B respectively be

F fix w in w ira A
a:AFfixpinc.l; p :: c : L

We can compose them to get:

Fa:A+«Q;B::c

- n C

An observation is a tuple (c : v) where v ¢ L.

17

Fairness for Multiset Rewriting

Systems

Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(x) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).

18

Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(x) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).

A multiset rewriting system is a set of
multiset rewrite rules.

18

Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(X) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).
A multiset rewriting system is a set of
multiset rewrite rules.
Given some C, a rule instantiation

r(€) : F(€) — 3n.G(c, n)
is applicable to M if M = F(¢), M".

18

Multiset Rewriting Systems

A multiset rewrite rule r is a pair of multisets F(X) and
G(x, n) of first-order atomic formulas.

r: Vx.F(xX) — 3n.G(X, n).

A multiset rewriting system is a set of
multiset rewrite rules.

Given some C, a rule instantiation
r(€) : F(€) — 3n.G(c, n)
is applicable to M if M = F(¢), M".

The result of applying r(¢) to M is G(&,d), M', where d are
fresh constants. Write M “E9, G(é d), M.

18

A trace is a sequence of multisets related by rule applications:

(rii(&,dh) (r2i(&,2)) (ri(c,d3))

MO) M1 > M2

where at each step the d. are globally fresh.

19

A trace is a sequence of multisets related by rule applications:

M @A),y (@A), (@),

where at each step the d. are globally fresh.

It is (liber) fair if for r € R, ¢, and i, if r(C) is applicable to
M;, then there exists a j > i such that r(c) = r;(c)).

19

Interference-Freedom

An MRS is interference-free on M, if, where

ri(¢i), ..., r(c,) are the rule instantiations applicable to Mj,
then all possible application orderings are valid and result in
the same multiset.

20

Interference-Freedom

An MRS is interference-free on M, if, where

ri(¢i), ..., r(c,) are the rule instantiations applicable to Mj,
then all possible application orderings are valid and result in
the same multiset.

It is interference-free from M, if for each trace from Mj, it
is interference-free on each M; in the trace.

20

Non-Overlapping MRSs

Proposition

Consider rules r; : VX;.Fi(X;) — 3n;.Gi(x;, ;).

If Fi(c1), ..., Fu(C,) are “non-overlapping” M, then the rules
are interference-free on M.

Example

The rules for session-typed processes are non-overlapping on
every multiset in a process trace.

21

Interference-Freedom: Fair Scheduler

Proposition

If an MRS is interference-free on My, then there exists a fair
maximal trace from M.

22

Consider a trace T (indexed by i € /)

(r1:(G1,dh) (ra; (52,672))\ (r3:(G3,d3)) o

MO) Ml M2

Given a permutation o of /, a sequence o - T

(ro(2)i(Er(2),d0(2)))
/ /
Ml M2

is called a permutation of T if it is also a trace.

23

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.

24

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from
M are permutations of each other.

24

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from
M, and o - T is a permutation of T, then o - T is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from
M are permutations of each other.

Corollary

All fair executions of a session-typed process are permutations
of each other.

24

Union-Equivalence

Two traces
Mo (fl;(fhdl))/ M, (f2:(52,52))/ M, (r3:(53,£73))/
N (rf:(&.d;))/ N, (r}:(85,d3)) N, (r3 (ngd’))

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).

25

Union-Equivalence

Two traces

(r2:(&,db)) (r3:(&,d5))

s M, ..
()

(r}:(&.d)){ N, (r§i(&5,db)) N,

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).

Theorem

If an MRS is interference-free from M, then all fair traces from
M are union-equivalent.

25

Union-Equivalence

Two traces
Mo (fl;(fhdl))/ M, (f2:(52,52))/ M, (r3:(53,£73))/
N (rf:(&.d;))/ N, (r}:(85,d3)) N, (r3 (ngd’))

are union-equivalent if | Jsupp(M;) = [Jsupp(N;).
Theorem

If an MRS is interference-free from M, then all fair traces from
M are union-equivalent.

Corollary

All fair executions of a session-typed process are
union-equivalent.

25

Unique Observations for Processes

Recall that observations are defined in terms of the union of
the supports of the multisets in a process execution.

If we restrict our attention fair executions,
then every process has a unique observation!

26

Contributions

An observed communication semantics for session-typed
languages with recursion that are specified by substructural
operational semantics (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

e Sufficient conditions for a fair scheduler
e Associated reasoning principles

e Various properties of fair traces

27

This work is still in its early stages!

e Relate the operational observation to a
domain-theoretic denotational semantics

e Relate to existing notions of operational observation and
equivalence: barbed congruence, bisimulation, etc.

28

Contributions

An observed communication semantics for session-typed
languages with recursion that are specified by substructural
operational semantics (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

e Sufficient conditions for a fair scheduler
e Associated reasoning principles

e Various properties of fair traces

29

Buffered Bit Flipping

i : bits + fix F in case i

{ b0 =>case i { b0 => 0.bl; 0.bl; F

| bl => 0.bl; 0.b0; F }
| bl => case 1 { b0 => 0.b0; o0.bl; F

| bl => 0.b0; 0.b0; F }

2 0 : bits

[back]

Related Work i

[Robert Atkey
Observed Communication Semantics for
Classical Processes
ESOP 2017, LNCS 10201, pp. 56-82, 2017.

[4 lliano Cervesato, Nancy Durgin, Patrick Lincoln et. al
A Comparison Between Strand Spaces and
Multiset Rewriting for Security Protocol Analysis
Journal of Computer Security 13(2), pp. 265-316, 2005.

Related Work ii

[1 Wen Kokke, Fabrizio Montesi & Marco Peressotti
Better Late Than Never: A Fully-Abstract
Semantics for Classical Processes
PACMPL 4(POPL):24, 2019.

	Observed Communication Semantics, Informally
	Observed Communication Semantics, More Formally
	Fairness for Multiset Rewriting Systems
	Appendix

