Substructural Observed Communication Semantics

Ryan Kavanagh EXPRESS/SOS 2020

Carnegie Mellon University

Contributions

An **observed communication semantics** for session-typed languages **with recursion** that are specified by **substructural operational semantics** (multiset rewriting systems).

Contributions

An **observed communication semantics** for session-typed languages **with recursion** that are specified by **substructural operational semantics** (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

- Sufficient conditions for a fair scheduler
- Associated reasoning principles
- Various properties of fair traces

Communicating Processes

Where

- c_i channel name
- A_i protocol (session type) for channel c_i
- P process

Communicating Processes

Where

- c_i channel name
- A_i protocol (session type) for channel c_i
- P process

Communicating Processes

Abbreviate as:

$$c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0 \qquad (n \ge 0)$$

$$\Delta \vdash P :: c_0: A_0$$

where $\Delta = c_1 : A_1, \ldots, c_n : A_n$.

What Can We Observe?

Key principle: We can only interact with processes through communication.

Corollary: Communications are the only semantically meaningful observables.

Observed Communication

Semantics, Informally

Observed Communication Semantics, Informally

The **observation** of a process

$$c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0 \text{ is the } (n+1)\text{-tuple}$$

$$(c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0) = (c_0 : v_0, \ldots, c_n : v_n)$$

where v_0, \ldots, v_n are the communications observed on the free channels c_0, \ldots, c_n .

4

Observed Communication Semantics, Informally

The **observation** of a process

$$c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0 \text{ is the } (n+1)\text{-tuple}$$

$$(c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0) = (c_0 : v_0, \ldots, c_n : v_n)$$

where v_0, \ldots, v_n are the communications observed on the free channels c_0, \ldots, c_n .

Two processes $\Delta \vdash P :: a : A \text{ and } \Delta \vdash Q :: a : A \text{ are}$ **observationally congruent** if for all $\Delta' \vdash C[\cdot] :: b : B$,

$$(\Delta' \vdash C[P] :: b : B) = (\Delta' \vdash C[Q] :: b : B).$$

Bit Stream Protocol

Bit stream protocol:

$$\mathtt{bits} = (\mathtt{b0}:\mathtt{bits}) \oplus (\mathtt{b1}:\mathtt{bits})$$

Example communications satisfying bits:

Bit Stream Protocol

Bit stream protocol:

$$\mathtt{bits} = (\mathtt{b0}:\mathtt{bits}) \oplus (\mathtt{b1}:\mathtt{bits})$$

Example communications satisfying bits:


```
\vdash fix S in i.b1; i.b0; S :: i : bits
```



```
\vdash fix S in i.b1; i.b0; S :: i : bits
```



```
\vdash fix S in i.b1; i.b0; S :: i : bits
```



```
\vdash fix S in i.b1; i.b0; S :: i : bits
```



```
\vdash fix S in i.b1; i.b0; S :: i : bits
```



```
⊢ fix S in i.b1; i.b0; S :: i : bits
```

Observation:

$$(\mid \vdash \mathtt{S} :: \mathtt{i} : \mathtt{bits}) = (\mathtt{i} : (\mathtt{b1}, (\mathtt{b0}, (\mathtt{b1}, (\cdots)))))$$

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \xrightarrow{b1 \, b0 \, b1 \, \cdots} o: bits
```

```
i : bits \vdash fix F in case i 
 { b0 => o.b1; F 
 | b1 => o.b0; F } :: o : bits
```

7

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \xrightarrow{b1 \, b0 \, b1 \, \cdots} o: bits
```

```
i: bits \xrightarrow{b0 \text{ b1 b0 b1} \cdots} o: bits
```

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \longrightarrow o: bits
```

```
i : bits \vdash fix F in case i 
 { b0 => o.b1; F 
 | b1 => o.b0; F } :: o : bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i : bits \vdash fix F in case i 
 { b0 => o.b1; F 
 | b1 => o.b0; F } :: o : bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i : bits \vdash fix F in case i 
 { b0 => o.b1; F 
 | b1 => o.b0; F } :: o : bits
```

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \xrightarrow{b1 \, b0 \, b1 \, \cdots} o: bits
```

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \xrightarrow{b1 \, b0 \, b1 \, \cdots} o: bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i : bits \vdash fix F in case i { b0 => o.b1; F | b1 => o.b0; F } :: o : bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i : bits \vdash fix F in case i 
 { b0 => o.b1; F 
 | b1 => o.b0; F } :: o : bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```

```
i: bits \xrightarrow{b0 \, b1 \, b0 \, \cdots} \xrightarrow{b1 \, b0 \, b1 \, \cdots} o: bits
```

```
i: bits \xrightarrow{b0 b1 b0 \cdots} F \xrightarrow{b1 b0 b1 \cdots} o: bits
```



```
i : bits ⊢ fix F in case i

{ b0 => o.b1; F

| b1 => o.b0; F } :: o : bits
```

Observation:

```
(\texttt{i}: \texttt{bits} \vdash \texttt{F} :: \texttt{o}: \texttt{bits}) = (\texttt{i}: \bot_{\texttt{bits}}, \texttt{o}: \bot_{\texttt{bits}})
```

Composing Processes

We can compose processes

Composing Processes

We can compose processes

Composing Processes

We can compose processes

```
\vdash \ S \ :: \ i \ : \ bits i \ : \ bits \ \vdash \ F \ :: \ o \ : \ bits
```

to get the process \vdash i : bits \leftarrow S; F :: o : bits

Observation:

$$(\vdash i : bits \leftarrow S; F :: o : bits) = (o : (b1, (b0, (b1, (\cdots)))))$$

Buffering and Equivalence

Consider an alternate implementation BuffF of F that buffers input and processes bits two at a time.

Buffering and Equivalence

Consider an alternate implementation BuffF of F that buffers input and processes bits two at a time.

$$(\vdash i : bits \leftarrow S; BuffF :: o : bits)$$

$$= (o : (b1, (b0, (b1, (\cdots)))))$$

$$= (\vdash i : bits \leftarrow S; F :: o : bits)$$

Let O send just one bit: ⊢ i.b1; fix w in w :: i : bits.

$$\begin{aligned} & (\vdash i : bits \leftarrow 0; BuffF :: o : bits)) \\ & = (o : \bot_{bits}) \\ & \neq (o : (b0, \bot_{bits})) \\ & = (\vdash i : bits \leftarrow 0; F :: o : bits). \end{aligned}$$

BuffF and F are **not observationally congruent!**

Other Protocols

- External choice: $\&\{I:A_I\}_{I\in L}$
- Channel transmission: $A \otimes B$ and $A \multimap B$
- Synchronization: $\uparrow A$ and $\downarrow A$
- Functional value transmission: $\tau \wedge A$ and $\tau \supset A$

Observed Communication

Semantics, More Formally

Languages are specified by a substructural operational semantics (a multiset rewriting system).

Languages are specified by a substructural operational semantics (a multiset rewriting system).

Two kinds of judgments in the multisets:

1. proc(c, P): process P provides channel c;

Languages are specified by a substructural operational semantics (a multiset rewriting system).

Two kinds of judgments in the multisets:

- 1. proc(c, P): process P provides channel c;
- 2. $msg(c, m; c \leftarrow d)$: channel c carries a message m with continuation channel d:

$$msg(c_1, m_1; c_1 \leftarrow c_2), msg(c_2, m_2; c_2 \leftarrow c_3),$$

 $msg(c_3, m_3; c_3 \leftarrow c_4), \dots$

Languages are specified by a substructural operational semantics (a multiset rewriting system).

Two Three kinds of judgments in the multisets:

- 1. proc(c, P): process P provides channel c;
- 2. $msg(c, m; c \leftarrow d)$: channel c carries a message m with continuation channel d:

$$msg(c_1, m_1; c_1 \leftarrow c_2), msg(c_2, m_2; c_2 \leftarrow c_3),$$

 $msg(c_3, m_3; c_3 \leftarrow c_4), \dots$

3. type(c : A): channel c has type A

Example Multiset Rewrite Rules

Unfolding recursive processes:

$$\mathsf{proc}(\mathtt{c},\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P})\to\mathsf{proc}(\mathtt{c},[\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P}/\mathtt{p}]\,\mathtt{P})$$

Example Multiset Rewrite Rules

Unfolding recursive processes:

$$\mathsf{proc}\big(\mathtt{c},\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P}\big)\to\mathsf{proc}\big(\mathtt{c},[\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P}/\mathtt{p}]\,\mathtt{P}\big)$$

Sending labels:

```
\begin{split} & \mathsf{proc}(c, c.k; P), \mathsf{type}(c: \oplus \{1: A_1\}_{1 \in L}) \rightarrow \\ & \exists \, d. \mathsf{msg}(c, c.k; c \leftarrow d), \mathsf{proc}(d, [d/c]P), \mathsf{type}(d: A_k) \end{split}
```

Example Multiset Rewrite Rules

Unfolding recursive processes:

$$\mathsf{proc}(\mathtt{c},\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P})\to\mathsf{proc}(\mathtt{c},[\mathtt{fix}\;\mathtt{p}\;\mathtt{in}\;\mathtt{P}/\mathtt{p}]\,\mathtt{P})$$

Sending labels:

```
\begin{split} \mathsf{proc}(c,c.k;P), \mathsf{type}(c:\oplus \{1:A_1\}_{1\in L}) \to \\ \exists\, d.\mathsf{msg}(c,c.k;c\leftarrow d), \mathsf{proc}(d,[d/c]P), \mathsf{type}(d:A_k) \end{split}
```

Receiving labels:

$$\mathsf{msg}(\mathtt{c},\mathtt{c.k};\mathtt{c} \leftarrow \mathtt{d}), \mathsf{proc}(\mathtt{e},\mathtt{case}\ \mathtt{c}\ \{\mathtt{1} \Rightarrow \mathtt{P_1}\}) \rightarrow \mathsf{proc}(\mathtt{e},[\mathtt{d/c}]\mathtt{P_k})$$

Executions

An **execution** of a process $c_1:A_1,\ldots,c_n:A_n\vdash P::c_0:A_0$ is a maximal trace starting from

$$\mathsf{type}(c_0:A_0),\ldots,\mathsf{type}(c_n:A_n),\mathsf{proc}(c_0,P).$$

proc(o, fix S in o.b1; o.b0; S)

proc(o, fix S in o.b1; o.b0; S)


```
\begin{split} & \mathsf{proc}(\texttt{o}, \texttt{fix} \; \texttt{S} \; \texttt{in} \; \texttt{o.b1}; \texttt{o.b0}; \texttt{S}) \\ & \to \mathsf{proc}(\texttt{o}, \textcolor{red}{\texttt{o.b1}}; \texttt{o.b0}; \texttt{fix} \; \texttt{S} \; \texttt{in} \; \texttt{o.b1}; \texttt{o.b0}; \texttt{S}) \end{split}
```



```
\begin{split} & \mathsf{proc}(\mathtt{o}, \mathtt{fix} \; \mathtt{S} \; \mathtt{in} \; \mathtt{o.b1}; \mathtt{o.b0}; \mathtt{S}) \\ & \to \mathsf{proc}(\mathtt{o}, \mathtt{o.b1}; \mathtt{o.b0}; \mathtt{fix} \; \mathtt{S} \; \mathtt{in} \; \mathtt{o.b1}; \mathtt{o.b0}; \mathtt{S}) \\ & \to \mathsf{msg}(\mathtt{o}, \mathtt{o.b1}; \mathtt{o} \leftarrow \mathtt{o_1}), \mathsf{proc}(\mathtt{o_1}, \mathtt{o_1.b0}; \mathtt{fix} \; \mathtt{S} \; \mathtt{in} \; \mathtt{o_1.b1}; \mathtt{o_1.b0}; \mathtt{S}) \end{split}
```



```
\begin{split} &\operatorname{\mathsf{proc}}(\mathsf{o},\operatorname{\mathsf{fix}}\,\mathsf{S}\,\operatorname{in}\,\mathsf{o}.\mathsf{b1};\mathsf{o}.\mathsf{b0};\mathsf{S}) \\ &\to \operatorname{\mathsf{proc}}(\mathsf{o},\mathsf{o}.\mathsf{b1};\mathsf{o}.\mathsf{b0};\operatorname{\mathsf{fix}}\,\mathsf{S}\,\operatorname{in}\,\mathsf{o}.\mathsf{b1};\mathsf{o}.\mathsf{b0};\mathsf{S}) \\ &\to \mathsf{msg}(\mathsf{o},\mathsf{o}.\mathsf{b1};\mathsf{o}\leftarrow\mathsf{o}_1),\operatorname{\mathsf{proc}}(\mathsf{o}_1,\mathsf{o}_1.\mathsf{b0};\operatorname{\mathsf{fix}}\,\mathsf{S}\,\operatorname{in}\,\mathsf{o}_1.\mathsf{b1};\mathsf{o}_1.\mathsf{b0};\mathsf{S}) \end{split}
```



```
\begin{split} &\operatorname{\mathsf{proc}}(\mathsf{o}, \operatorname{\mathsf{fix}} \, \mathsf{S} \, \operatorname{in} \, \mathsf{o.b1}; \mathsf{o.b0}; \mathsf{S}) \\ &\to \operatorname{\mathsf{proc}}(\mathsf{o}, \mathsf{o.b1}; \mathsf{o.b0}; \operatorname{\mathsf{fix}} \, \mathsf{S} \, \operatorname{in} \, \mathsf{o.b1}; \mathsf{o.b0}; \mathsf{S}) \\ &\to \operatorname{\mathsf{msg}}(\mathsf{o}, \mathsf{o.b1}; \mathsf{o} \leftarrow \mathsf{o_1}), \operatorname{\mathsf{proc}}(\mathsf{o_1}, \mathsf{o_1.b0}; \operatorname{\mathsf{fix}} \, \mathsf{S} \, \operatorname{in} \, \mathsf{o_1.b1}; \mathsf{o_1.b0}; \mathsf{S}) \\ &\to \operatorname{\mathsf{msg}}(\mathsf{o}, \mathsf{o.b1}; \mathsf{o} \leftarrow \mathsf{o_1}), \operatorname{\mathsf{msg}}(\mathsf{o_1}, \mathsf{o_1.b0}; \mathsf{o_1} \leftarrow \mathsf{o_2}), \\ &\quad \operatorname{\mathsf{proc}}(\mathsf{o_2}, \operatorname{\mathsf{fix}} \, \mathsf{S} \, \operatorname{in} \, \mathsf{o_2.b1}; \mathsf{o_2.b0}; \mathsf{S}) \end{split}
```



```
\begin{split} & proc(o, fix \ S \ in \ o.b1; o.b0; S) \\ & \rightarrow proc(o, o.b1; o.b0; fix \ S \ in \ o.b1; o.b0; S) \\ & \rightarrow msg(o, o.b1; o \leftarrow o_1), proc(o_1, o_1.b0; fix \ S \ in \ o_1.b1; o_1.b0; S) \\ & \rightarrow msg(o, o.b1; o \leftarrow o_1), msg(o_1, o_1.b0; o_1 \leftarrow o_2), \\ & proc(o_2, fix \ S \ in \ o_2.b1; o_2.b0; S) \end{split}
```



```
\begin{split} & \text{proc}(o, \text{fix S in o.b1}; o.b0; S) \\ & \to \text{proc}(o, o.b1; o.b0; \text{fix S in o.b1}; o.b0; S) \\ & \to \text{msg}(o, o.b1; o \leftarrow o_1), \text{proc}(o_1, o_1.b0; \text{fix S in o_1.b1}; o_1.b0; S) \\ & \to \text{msg}(o, o.b1; o \leftarrow o_1), \text{msg}(o_1, o_1.b0; o_1 \leftarrow o_2), \\ & \quad \text{proc}(o_2, \text{fix S in o_2.b1}; o_2.b0; S) \\ & \to \text{msg}(o, o.b1; o \leftarrow o_1), \text{msg}(o_1, o_1.b0; o_1 \leftarrow o_2), \\ & \quad \text{proc}(o_2, o_2.b1; o_2.b0; \text{fix S in o_2.b1}; o_2.b0; S) \end{split}
```



```
proc(o, fix S in o.b1; o.b0; S)
 \rightarrow proc(o, o.b1; o.b0; fix S in o.b1; o.b0; S)
 \rightarrow msg(o, o.b1; o \leftarrow o<sub>1</sub>), proc(o<sub>1</sub>, o<sub>1</sub>.b0; fix S in o<sub>1</sub>.b1; o<sub>1</sub>.b0; S)
 \rightarrow msg(o, o.b1; o \leftarrow o<sub>1</sub>), msg(o<sub>1</sub>, o<sub>1</sub>.b0; o<sub>1</sub> \leftarrow o<sub>2</sub>),
                  proc(o_2, fix S in o_2.b1; o_2.b0; S)
 \rightarrow \mathsf{msg}(\mathsf{o}, \mathsf{o.b1}; \mathsf{o} \leftarrow \mathsf{o}_1), \mathsf{msg}(\mathsf{o}_1, \mathsf{o}_1.\mathsf{b0}; \mathsf{o}_1 \leftarrow \mathsf{o}_2),
                  proc(o_2, o_2.b1; o_2.b0; fix S in o_2.b1; o_2.b0; S)
```

14

Session-Typed Communications

A session-typed communication is a (potentially infinite) tree ν generated by the grammar:

$$v := \bot_A \mid (k, v) \mid (v, v') \mid \cdots$$

They are associated to session types by rules, e.g.,

$$\frac{v_k \varepsilon A_k}{\bot_{\oplus \{I:A_I\}_{I \in L}} \varepsilon \oplus \{I:A_I\}_{I \in L}} \frac{v_k \varepsilon A_k}{(k, v_k) \varepsilon \oplus \{I:A_I\}_{I \in L}}$$

Session-Typed Communications

A session-typed communication is a (potentially infinite) tree ν generated by the grammar:

$$v := \bot_A \mid (k, v) \mid (v, v') \mid \cdots$$

They are associated to session types by rules, e.g.,

$$\frac{v_k \varepsilon A_k}{\perp_{\bigoplus \{I:A_I\}_{I \in L}} \varepsilon \bigoplus \{I:A_I\}_{I \in L}} \frac{v_k \varepsilon A_k}{(k, v_k) \varepsilon \bigoplus \{I:A_I\}_{I \in L}}$$

Given a trace T, the judgment $T \rightsquigarrow v \in A / c$ means we observed a session-typed communication v of type A on channel c in T.

It is coinductively defined using the union of multisets in T (without repetitions).

From Traces to Observed Communications

The **observation** of a process

$$c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0$$
 is the $(n+1)$ -tuple

$$(c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0) = (c_0: v_0, \ldots, c_n: v_n)$$

where $T \rightsquigarrow \mathbf{v}_i \in \mathbf{A}_i / \mathbf{c}_i$ for $0 \le i \le n$.

Problems. Are observations unique? Does it make sense for it to be unique? What about unfair executions?

Unfair Executions: Pathological Example

Let $L = \bigoplus \{I : L\}$, and let Ω and B respectively be

```
\vdash \texttt{fix w in w} \qquad :: \texttt{a} : \texttt{A} \texttt{a} : \texttt{A} \vdash \texttt{fix p in c.l; p} :: \texttt{c} : \texttt{L}
```

Unfair Executions: Pathological Example

Let $L = \bigoplus \{I : L\}$, and let Ω and B respectively be

$$\vdash$$
 fix w in w :: a : A a : A \vdash fix p in c.l; p :: c : L

We can compose them to get:

$$\vdash$$
 a : A \leftarrow Ω ; B :: c : L

An observation is a tuple (c : v) where $v \in L$.

Fairness for Multiset Rewriting

Systems

A multiset rewrite rule r is a pair of multisets $F(\vec{x})$ and $G(\vec{x}, \vec{n})$ of first-order atomic formulas.

$$r: \forall \vec{x}. F(\vec{x}) \rightarrow \exists \vec{n}. G(\vec{x}, \vec{n}).$$

A multiset rewrite rule r is a pair of multisets $F(\vec{x})$ and $G(\vec{x}, \vec{n})$ of first-order atomic formulas.

$$r: \forall \vec{x}.F(\vec{x}) \rightarrow \exists \vec{n}.G(\vec{x},\vec{n}).$$

A multiset rewriting system is a set of multiset rewrite rules.

A multiset rewrite rule r is a pair of multisets $F(\vec{x})$ and $G(\vec{x}, \vec{n})$ of first-order atomic formulas.

$$r: \forall \vec{x}. F(\vec{x}) \rightarrow \exists \vec{n}. G(\vec{x}, \vec{n}).$$

A multiset rewriting system is a set of multiset rewrite rules.

Given some \vec{c} , a rule instantiation

$$r(\vec{c}): F(\vec{c}) \rightarrow \exists \vec{n}. G(\vec{c}, \vec{n})$$

is **applicable** to M if $M = F(\vec{c}), M'$.

A multiset rewrite rule r is a pair of multisets $F(\vec{x})$ and $G(\vec{x}, \vec{n})$ of first-order atomic formulas.

$$r: \forall \vec{x}.F(\vec{x}) \rightarrow \exists \vec{n}.G(\vec{x},\vec{n}).$$

A multiset rewriting system is a set of multiset rewrite rules.

Given some \vec{c} , a rule instantiation

$$r(\vec{c}): F(\vec{c}) \rightarrow \exists \vec{n}. G(\vec{c}, \vec{n})$$

is **applicable** to M if $M = F(\vec{c}), M'$.

The **result** of applying $r(\vec{c})$ to M is $G(\vec{c}, \vec{d}), M'$, where \vec{d} are fresh constants. Write $M \xrightarrow{(r;(\vec{c},\vec{d}))} G(\vec{c}, \vec{d}), M'$.

Über Fairness

A **trace** is a sequence of multisets related by rule applications:

$$M_0 \xrightarrow{(r_1; (\vec{c}_1, \vec{d}_1))} M_1 \xrightarrow{(r_2; (\vec{c}_2, \vec{d}_2))} M_2 \xrightarrow{(r_3; (\vec{c}_3, \vec{d}_3))} \cdots$$

where at each step the $\vec{d_i}$ are globally fresh.

Über Fairness

A trace is a sequence of multisets related by rule applications:

$$M_0 \xrightarrow{(r_1; (\vec{c}_1, \vec{d}_1))} M_1 \xrightarrow{(r_2; (\vec{c}_2, \vec{d}_2))} M_2 \xrightarrow{(r_3; (\vec{c}_3, \vec{d}_3))} \cdots$$

where at each step the $\vec{d_i}$ are globally fresh.

It is **(über)** fair if for $r \in \mathcal{R}$, \vec{c} , and i, if $r(\vec{c})$ is applicable to M_i , then there exists a j > i such that $r(\vec{c}) \equiv r_j(\vec{c}_j)$.

Interference-Freedom

An MRS is **interference-free** on M_0 if, where $r_1(\vec{c}_1), \ldots, r_n(\vec{c}_n)$ are the rule instantiations applicable to M_0 , then all possible application orderings are valid and result in the same multiset.

Interference-Freedom

An MRS is **interference-free** on M_0 if, where $r_1(\vec{c}_1), \ldots, r_n(\vec{c}_n)$ are the rule instantiations applicable to M_0 , then all possible application orderings are valid and result in the same multiset.

It is **interference-free from** M_0 if for each trace from M_0 , it is interference-free on each M_i in the trace.

Non-Overlapping MRSs

Proposition

Consider rules $r_i : \forall \vec{x_i}.F_i(\vec{x_i}) \to \exists \vec{n_i}.G_i(\vec{x_i},\vec{n_i})$. If $F_1(\vec{c_1}), \ldots, F_n(\vec{c_n})$ are "non-overlapping" M, then the rules are interference-free on M.

Example

The rules for session-typed processes are non-overlapping on every multiset in a process trace.

Interference-Freedom: Fair Scheduler

Proposition

If an MRS is interference-free on M_0 , then there exists a fair maximal trace from M_0 .

Permutations

Consider a trace T (indexed by $i \in I$)

$$M_0 \xrightarrow{(r_1;(\vec{c_1},\vec{d_1}))} M_1 \xrightarrow{(r_2;(\vec{c_2},\vec{d_2}))} M_2 \xrightarrow{(r_3;(\vec{c_3},\vec{d_3}))} \cdots$$

Given a permutation σ of I, a sequence $\sigma \cdot T$

$$M_0 \xrightarrow{(r_{\sigma(1)}; (\vec{c}_{\sigma(1)}, \vec{d}_{\sigma(1)}))} M_1' \xrightarrow{(r_{\sigma(2)}; (\vec{c}_{\sigma(2)}, \vec{d}_{\sigma(2)}))} M_2' \xrightarrow{(r_{\sigma(3)}; (\vec{c}_{\sigma(3)}, \vec{d}_{\sigma(3)}))} \cdots$$

is called a **permutation of** T if it is also a trace.

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from M, and $\sigma \cdot T$ is a permutation of T, then $\sigma \cdot T$ is also fair.

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from M, and $\sigma \cdot T$ is a permutation of T, then $\sigma \cdot T$ is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from M are permutations of each other.

Permutation and Fairness

Theorem

If an MRS is interference-free from M, T is a fair trace from M, and $\sigma \cdot T$ is a permutation of T, then $\sigma \cdot T$ is also fair.

Theorem

If an MRS is interference-free from M, then all fair traces from M are permutations of each other.

Corollary

All fair executions of a session-typed process are permutations of each other.

Union-Equivalence

Two traces

$$M_0 \xrightarrow{(r_1;(\vec{c}_1,\vec{d}_1))} M_1 \xrightarrow{(r_2;(\vec{c}_2,\vec{d}_2))} M_2 \xrightarrow{(r_3;(\vec{c}_3,\vec{d}_3))} \cdots$$

$$N_0 \xrightarrow{(r'_1;(\vec{c}'_1,\vec{d}'_1))} N_1 \xrightarrow{(r'_2;(\vec{c}'_2,\vec{d}'_2))} N_2 \xrightarrow{(r'_3;(\vec{c}'_3,\vec{d}'_3))} \cdots$$
are **union-equivalent** if $\bigcup \text{supp}(M_i) = \bigcup \text{supp}(N_i)$.

Union-Equivalence

Two traces

$$M_0 \xrightarrow{(r_1; (\vec{c_1}, \vec{d_1}))} M_1 \xrightarrow{(r_2; (\vec{c_2}, \vec{d_2}))} M_2 \xrightarrow{(r_3; (\vec{c_3}, \vec{d_3}))} \cdots$$

$$N_0 \xrightarrow{(r'_1; (\vec{c_1}, \vec{d_1}'))} N_1 \xrightarrow{(r'_2; (\vec{c_2}, \vec{d_2}'))} N_2 \xrightarrow{(r'_3; (\vec{c_3}, \vec{d_3}'))} \cdots$$

are **union-equivalent** if $\bigcup \text{supp}(M_i) = \bigcup \text{supp}(N_i)$.

Theorem

If an MRS is interference-free from M, then all fair traces from M are union-equivalent.

Union-Equivalence

Two traces

$$M_0 \xrightarrow{(r_1; (\vec{c_1}, \vec{d_1}))} M_1 \xrightarrow{(r_2; (\vec{c_2}, \vec{d_2}))} M_2 \xrightarrow{(r_3; (\vec{c_3}, \vec{d_3}))} \cdots$$

$$N_0 \xrightarrow{(r'_1; (\vec{c_1'}, \vec{d_1'}))} N_1 \xrightarrow{(r'_2; (\vec{c_2'}, \vec{d_2'}))} N_2 \xrightarrow{(r'_3; (\vec{c_3'}, \vec{d_3'}))} \cdots$$

are **union-equivalent** if $\bigcup \text{supp}(M_i) = \bigcup \text{supp}(N_i)$.

Theorem

If an MRS is interference-free from M, then all fair traces from M are union-equivalent.

Corollary

All fair executions of a session-typed process are union-equivalent.

Unique Observations for Processes

Recall that observations are defined in terms of the union of the supports of the multisets in a process execution.

If we restrict our attention fair executions, then **every process has a unique observation**!

Contributions

An **observed communication semantics** for session-typed languages **with recursion** that are specified by **substructural operational semantics** (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

- Sufficient conditions for a fair scheduler
- Associated reasoning principles
- Various properties of fair traces

Future Work

This work is still in its early stages!

- Relate the operational observation to a domain-theoretic denotational semantics
- Relate to existing notions of operational observation and equivalence: barbed congruence, bisimulation, etc.

Contributions

An **observed communication semantics** for session-typed languages **with recursion** that are specified by **substructural operational semantics** (multiset rewriting systems).

A notion of fairness for multiset rewriting systems.

- Sufficient conditions for a fair scheduler
- Associated reasoning principles
- Various properties of fair traces

Buffered Bit Flipping

[back]

Related Work i

Robert Atkey

Observed Communication Semantics for Classical Processes

ESOP 2017, LNCS 10201, pp. 56-82, 2017.

Iliano Cervesato, Nancy Durgin, Patrick Lincoln et. al A Comparison Between Strand Spaces and Multiset Rewriting for Security Protocol Analysis

Journal of Computer Security 13(2), pp. 265-316, 2005.

Related Work ii

Wen Kokke, Fabrizio Montesi & Marco Peressotti Better Late Than Never: A Fully-Abstract Semantics for Classical Processes PACMPL 4(POPL):24, 2019.