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Abstract. In this survey paper, we present a proof of the Wallace-Bolyai-Gerwien theorem, namely,
that any two plane polygons of the same area may be decomposed into the same number of pairwise
congruent triangles. Several generalisations and closely related theorems will be considered, and an
original example will be explored.

1. Introduction

In 1814, Wallace [WL14] posed:
Is it possible in every case to divide each of two equal but dissimilar rectilinear ûgures,
into the same number of triangles, such, that those which constitute the one ûgure are
respectively identical with those which constitute the other?

hat same year, Lowry provided a proof in the aõrmative. Perhaps due to its intuitive nature, variants
of Wallace’s question have been independently posed and answered several times. For example, a
positive answer was independently conjectured and proved in 1833 by Gerwien [Ger33a], who also
generalised it to spherical polygons [Ger33b]. In 1832, Farkas Bolyai [Bol04, pp. 108ò.] showed any
plane polygon could be “transmuted” into a rectangle with an equal area, a step that, as we shall see, is
an integral part of Lowry’s proof and from which the remainder of the proof readily follows. In 1912,
Jackson [Jac12] again independently discovered the result, with a proof identical to Lowry’s. Due to
their contributions, this theorem is now known as theWallace-Bolyai-Gerwien theorem. Readers
interested in a detailed account of this theorem’s history are referred to Bartocci [Bar12, pp. 21–39].

Given its frequent appearance in mathematics, it is not surprising that Hilbert was well aware
of the theorem. Indeed, it makes an unnamed appearance in his axiomatisation of geometry as
“heorem 30” ofhe Foundations of Geometry [Hil02b]. Moreover, Hilbert’s [Hil02a] third problem
generalised Wallace’s question to the decomposition of polyhedra into tetrahedra.

In section 2, we will revisit the notions of polygons and area and dispatch an unsettling circularity
between common notions of area and the above theorem. hen, in section 3, we present Lowry’s,
Jackson’s, and Hartshorne’s similar proofs. In section 4, we will apply Lowry’s technique to two
polygons with equal area to show how they may be dissected into pairwise congruent triangles.
Finally, in section 5, we will conclude by considering various generalisations and questions that
naturally arise from this theorem, before posing our own open questions.

2. Polygons and Area

We will assume throughout that we are working in a Hilbert plane satisfying Hilbert’s parallel
axiom and the Archimedian axiom. We recall the statement of the parallel axiom [Hil02b, §5]:

In a plane α there can be drawn through any point A, lying outside of a straight line a,
one and only one straight line which does not intersect the line a.
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he statement of the Archimedian axiom is [Har00, p. 115]:
Given line segments ĎAB and ĚCD, there is a natural number n such that n copies of
ĎAB added together will be greater than ĚCD.

We next recall the standard notion of polygon, using a formulation from Hilbert [Hil02b, p. 9].

Deûnition 1. A system of segments Ěp1p2, Ěp2p3, . . . , Ğpn−1pn , Ğpnpn+1 is called a broken line. If pn+1 = p1,
then we call this broken line a polygon, the segments forming it sides or edges, and the points pi
its vertices. A polygon is called simple if its points are distinct, none of them lie in any of the sides
forming the polygon, and no two of its edges intersect.

It is intuitively clear that every simple polygon divides the plane into an interior region and an
exterior region. his intuition can be made precise as follows:

Proposition 1 ([Hil02b, heorem 6]). Every simple polygon divides the points not lying on its sides
into two disjoint regions, an interior and an exterior, such that:

● If A is a point of the interior and B a point of the exterior, then any broken line joining them
intersects the polygon in at least one point.

● If A and A′ are two points of the interior, and B and B′ are two points of the exterior, then there
always exist broken lines joining A to A′, and B to B′ that do not intersect the polygon.

● here exist straight lines in the plane which lie entirely outside of the polygon, but none which lie
entirely within it.

Questions of “area” revolve around this interior region, and have historically involved a certain
amount of vagueness. For example, Euclid never explicitly deûned his notion of “area”, and although
in modern times, we treat area as a numeric measurement, this was not the case for him. Rather, he
treated it as an undeûned notion of equality satisfying the following properties [Har00, p. 196]:

(1) Congruent ûgures are “equal”.
(2) Sums of “equal” ûgures are “equal”.
(3) Diòerences of “equal” ûgures are “equal”.
(4) Halves of “equal” ûgures are “equal”.
(5) he whole is greater than the part.
(6) If squares are “equal”, then their sides are equal.
In 1878, French mathematician Duhamel claimed that two sizes of the same type are equivalent

if they are composed of parts which are respectively equal.1 Using the notion of “decomposition”,
Hilbert’s formalisation of area echoes this, and provides two notions re�ecting Euclid’s intuitive
notion of area. A non-self-intersecting broken line joining two points of a polygon P and lying
completely in its interior decomposes P into two polygons P1 and P2 with disjoint interiors, each of
which is a subset of the interior of P; we also say that P is composed of P1 and P2. For example, a
diagonal decomposes a square into two triangles, and a pentagon into a triangle and a quadrilateral.
We are now free to deûne the notions:

Deûnition 2 (Equal area [Hil02b, p. 58]). Two polygons are said to be of equal area when they can
be decomposed into a ûnite number of triangles which are respectively congruent to one another in
pairs.

1“Deux grandeurs d’espèce quelconque sont dites équivalentes, quand elles sont composées de parties respectivement
égales, [. . . ]”. [Duh78, p. 446]
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Deûnition 3 (Equal content [Hil02b, p. 58]). Two polygons are said to be of equal content when it
is possible, by the addition of other polygons having equal area, to obtain two resulting polygons
having equal area.

Although these notions appear in multiple sources, nomenclature unavoidably varies by author.
For example, Hartshorne [Har00] calls these notions equidecomposability and equal content, respec-
tively, and calls a notion of equal area permitting decomposition into arbitrary congruent polygons
equivalence by dissection; Jackson [Jac12] calls this last notion congruence by dissection. Although
polygons with equal area clearly have equal content [Har00, Proposition 22.3], these notions are dis-
tinct for general Hilbert planes (see, e.g., Hilbert [Hil02b, p. 34] for a construction of two congruent
triangles with equal content but unequal area, or Hartshorne [Har00, Example 22.1.3] for a similar
construction using parallelograms); they coincide when the Archimedian axiom is satisûed [Har00,
22.1.4, 24.7.3, & 36.7.1].
But herein lies the diõculty with the Wallace-Bolyai-Gerwien theorem. It is true by deûnition

under Hilbert’s deûnition of area, and similarly true under Euclid’s implicit but undeûned notion of
“area”, which Hartshorne takes to be “equal content”. It is only a careful study of the proof that reveals
that the notion of area implicit in the theorem is that of a numeric measurement. Indeed, although
the German geometric tradition follows Euclid in treating area as a purely geometric construction,
the American and English traditions of the era treat area as a number [Jac12, p. 384] satisfying at least
the following axioms:

(1) he area of a geometric ûgure is a number.
(2) Congruent ûgures have the same area.
(3) he area of a ûgure is the sum of the areas of its parts.
(4) If equal areas are added to equal areas, the wholes are of equal area.
(5) If equal areas are removed from equal areas, the remainders are of equal area.
(6) he halves of equal areas are of equal area.

Here, it is implicit that the notion of “number” is that of a real number. However, since we are working
over Hilbert planes, we must be careful in choosing our notion of measurement, and various choices
for such a notion exist. For example, Hartshorne [Har00, §23] deûnes a measure of area function to
be a positive function into an ordered group whose restriction to triangles satisûes axioms 2 and 4,
and then proceeds to prove various properties, including that such a function exists. For the sake of
simplicity, we follow Hilbert’s path and, where the base and height of a triangle are deûned in the
usual way, deûne:

Deûnition 4. hemeasure of area F(∆) of the triangle ∆ is given by half of the product of its base
and height.

his measure is an element of the ûeld induced by segment arithmetic. It is not diõcult to show
that this function is well-deûned, i.e., independent of the choice of base and altitude; see Hilbert
[Hil02b, §20] or Hartshorne [Har00, Lemma 23.3] for details. Hilbert then extends this to:

Deûnition 5. hemeasure of area F(P) of a polygon P is given by the sum of measures of area of a
given ûnite decomposition of it into triangles.

It is not immediately clear that this function is well-deûned, i.e., independent of the choice of
triangulation. Fortunately, we have:

Proposition 2 ([Hil02b,heorem 29; Har00, Lemma 23.5]). hemeasure of area function for polygons
is well-deûned.
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Figure 1. Various triangulations

Proof (sketch). hough elementary, the proof is suõciently long that we can only aòord to give a
sketch, which we base oò of Hartshorne [Har00, pp. 207–210].
We ûrst show that given any triangle T , F(T) is independent of triangulation, i.e., that for any

triangulation Ti of T , we have:

(1) F(T) = ∑
i
F(Ti).

he fundamental case is when T is divided into a transversal triangulation, that is to say, when the
triangulation is determined by segments joining a common vertex S with endpoints p1, . . . , pn+1 on
the opposite side, as in Figure 1a. Taking this opposite side b to be the base, we see that all of the
triangles Ti = pipi+1S in the triangulation have the same altitude h as the triangulated triangle T .
hen, due to the distributivity of our ûeld, we have that:

F(T) = 1
2
hb = 1

2
h (Ěp1p2 +⋯ + Ğpnpn+1) =

n
∑
i=1

1
2
hĞpipi+1 =

n
∑
i=1
F(Ti),

and so (1) holds when the triangulation is transversal.
he second case consists of a transversal triangulation where we permit the triangles in the

triangulation to themselves be transversally triangulated, provided that at least one T ’s edges has
no new vertices and that there are no new vertices in the interior of T . An example of this case
is illustrated by Figure 1b, where ĎPQ has no new vertices, the triangle VSP is itself transversally
triangulated, and there are no new vertices in the interior of the triangle. his case is proven by
induction on the number of triangles forming the triangulation. If there are only two, then we fall into
the previous case, so suppose there are more than two. hen the side with no new vertices ĎPQ belongs
to a triangle T1 of the triangulation, and its third vertex R must lie on one of the other two sides, say
ĎQS. hen the triangle PRS is triangulated as per the hypotheses of this second case and it has one
less triangle in its triangulation. hus, by the induction hypothesis, we have that F(PRS) = ∑n

i=2 Tn.
But by the ûrst case, we also have that F(T) = F(PQR) + F(PRS) = F(T1) + F(PRS), so combining
these two results, we get F(T) = ∑n

i=1 Ti . hus, when a triangle is triangulated as per the hypotheses
of this case, (1) holds as desired.

he general case treats arbitrary triangulation of T , and its proof consists of reducing such trian-
gulations back to the second case. Its proof is omitted due to space constraints.

Having shown that F(T) is well-deûned for triangles T , we now turn to arbitrary polygons P.
Suppose we are given given two triangulations Ti and T ′

j of a polygon P, then we can straightforwardly
adapt the proof of Proposition 3 below. he general idea is to consider the intersections Ii j of the Ti
and T ′

j , themselves triangulated into Ii j = ⋃k Ti jk if Ii j is not a triangle. hen by the general case for
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triangles, we have that each F(Ti) = ∑ j,k F(Ti jk) and F(T ′

j) = ∑i ,k F(Ti jk), and so

∑
i
F(Ti) = ∑

i , j,k
F(Ti jk) = ∑

j
F(T ′

j).

We thus conclude the proposition. �

Since F is well-deûned, if two polygons have equal area, they clearly have equal measure of area.
Having thus laid the stage, we can now interpret theWallace-Bolyai-Gerwien theorem as the converse
of this observation, namely, that if two polygons have equal measure of area, they have equal area.
his observation and its converse correspond to Hilbert [Hil02b, heorem 30], while the converse
alone is Hartshorne [Har00, Proposition 23.7].
We take a moment to prove several propositions relating our notions of area. he ûrst relates

Jackson’s congruence by dissection to our notion of equal area; it will be useful for bringing Jackson’s
proofs into Hilbert’s system, and it appears as a brief remark without proof in Hartshorne [Har00,
p. 213].

Proposition 3. Two polygons are congruent by dissection if and only if they have equal area.

Proof. Suppose the polygons A and B are congruent by dissection, and are decomposed into re-
spectively congruent pieces A1, . . . ,An and B1, . . . , Bn. hen for each i, decompose Ai and Bi into
respectively congruent triangles Ai1, . . . ,Aim i and Bi1, . . . , Bim i . hen Ai and Bi have equal area, and,
considering all Ai j and Bi j, clearly, so do A and B. he converse is immediate. �

he second states that equality of area is an equivalence relation, and appears in several sources
[Hil02b, heorem 24; Jac12, heorem I; Har00, Proposition 22.2]. Here, we follow Jackson’s proof:

Proposition 4 ([Jac12, heorem I]). Two polygons each congruent by dissection with a third are
congruent by dissection with each other.

Proof. Assume that the polygons A and B are each congruent by dissection with C. hen A can
be decomposed into polygons A1, . . . ,Ar and C into respectively congruent polygons A′1, . . . ,A′r.
Similarly, B can be decomposed into polygons B1, . . . , Bs and C into respectively congruent polygons
B′1, . . . , B′s. hen setting [A′iB′j] to be the intersection of A′i and B′j, we have that A′i can can be
dissected into [A′iB′1], . . . , [A′iB′s], and since Ai is congruent to A′i , it can be dissected into portions
respectively congruent to these. hus, C can be dissected into { [A′iB′j] } (1 ≤ i ≤ r, 1 ≤ j ≤ s), and
A can be dissected into respectively congruent { [AiB j] }. But B can in the same way be dissected
into parts respectively congruent to the { [A′iB′j] } forming C, and so by transitivity of congruence
of polygons, A and B are congruent by dissection. �

Corollary 1. Two polygons each having equal area to a third themselves have area equal. hus, equality
of area is an equivalence relation.

Proof. he ûrst claim is immediate by Propositions 3 and 4. As for equivalence, re�exivity and
symmetry are obvious, while symmetry and the proposition give transitivity. �

3. Lowry’s, Jackson’s, and Hartshorne’s Proofs

We consider the proofs by Lowry, Jackson, and Hartshorne, all of which follow the same general
structure. We begin with a short lemma:
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Lemma 1 ([WL14, Prob. I]). To decompose a given triangle into parts which shall form a rectangle.
(Figure 2)

Proof. Let ĎAB be the longest side of a triangle ABE, and let H and G be the midpoints of ĎAE and ĎBE
respectively. hen, by Euclid [Euc08b, VI.2], the lines HG and AB are parallel. Extend the segment
ĚHG so that it intersects the perpendiculars at A and B of ĎAB in C and D, respectively. Now, let ĎFE
be perpendicular to ĚHG with F on ĚHG. hen by Euclid [Euc08a, I.15], the angle∠FGE is congruent
to the angle ∠BGD. hus, by Euclid [Euc08a, I.26], the triangles FEG and GDB are congruent;
symmetrically, ACH and HFE are congruent. But then, it is easy to see that ABDC and AEB have
equal area. �

A B

D
F

E

C

Figure 2. Lemma 1

All of the authors having established that for every triangle, there exists a rectangle of equal area,
they all proceed with the following lemma, which requires Archimedes’s axiom. While Jackson’s and
Hartshorne’s proofs are identical, Lowry’s is exceedingly complex and will not be reproduced here.

Lemma 2 ([WL14, Prob. II; Jac12,heorem IV; Har00, Proposition 24.5]). Given any rectangle ABCD
and any segment EF, there exists a rectangle EFGH equivalent by dissection to ABCD. (Figure 3)

Proof. Wemust fall into one of the following three cases:
(1) ĎAB > 2ĎEF;
(2) 2ĎEF ≥ ĎAB ≥ ĎEF; or
(3) ĎEF > ĎAB.

It is suõcient to consider only the second case. Indeed, in the ûrst case, by successively halving the
base and consequently doubling the height a ûnite number of times, we obtain by the Archimedian
axiom a rectangle satisfying the second case, which is equivalent by dissection to the original one by
transitivity. Similarly, by successively doubling the base and consequently halving the height a ûnite
number of times, we may also reduce the third case to the second case.

In the second case, let R lie on ĎAB and S on ĚDC such that ĎAR and ĎSC are congruent to ĎEF. Extend
ĎAD until it intersects with the ray B⃗S in U , and draw the rectangle ARVU . hen by Euclid [Euc08a,
I.29], the angles ∠RBT and ∠DSU are congruent, and so by Euclid [Euc08a, I.26], the triangles
RBT and DSU are congruent. Similarly, since ĎSC ≅ ĎAR ≅ ĚUV , and the angles∠VUS and∠CSB
are congruent by Euclid [Euc08a, I.29], the triangles TUV and BSC are congruent. So, subtracting
congruent part from congruent triangles, we get that the quadrilaterals USWV and TWCB have
equal content. hus, the rectangles ABCD and ARVU have equal content, and ARVU is the rectangle
we seek. �

From here, Lowry, Jackson and Hartshorne all derive the theorem in the same manner, up to a
choice of rectangle base in the proof:
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Figure 3. Lemma 2

heorem 1 ([WL14, pp. 45f.; Jac12, heorem V. Wallace’s heorem; Har00, heorem 24.7]). Two
plane polygons with the same measure of area are congruent by dissection.

Proof. Any polygon can be decomposed into triangles, and by Proposition 4 and Lemmas 1 and 2,
each of these is respectively congruent by dissection to a rectangle with base 1. hese rectangles may
then be “stacked” to form a single rectangle with base 1. hus, given any two polygons P and Q of
the same area, there exist two rectangles with which they are respectively congruent by dissection,
say, of dimensions 1 by a and 1 by b respectively. It follows that

a = 1a = F(P) = F(Q) = 1b = b,

and so the two rectangles are congruent. hus, the two polygons are congruent by dissection to the
same rectangle, and so by Proposition 4 are themselves congruent by dissection. �

Corollary 2 (Wallace-Bolyai-Gerwien heorem). Two plane polygons with the same measure of area
have the same area.

4. Example

Beyond the examples of dissections given in Figures 2 and 3, we consider the task of showing that
a right triangle and a square with the same measure of area have the same area. Our initial triangle
and square are shown in Figures 4a and 4b. he triangle has measure of area 8 since the lengths of its
base and its height are both four, while the square also has measure of area 8 since the length of its
base is 2

√
2. We begin by applying Lemma 1 to the triangle to transform it into a rectangle, as shown

in Figure 4c. Cutting this rectangle in half lengthwise along the dotted line, we can rearrange it to
form a rectangle, as shown in Figure 4d. Had the catheti of the initial triangle not been congruent,
this rectangle would not have been a square, and we would have had to invoke Lemma 2 to get a
square congruent to that of Figure 4b. he rearranging of triangles at the end would thus have been
considerably messier. Fortunately, we chose our initial triangle to simplify presentation, and it so
happens that this resulting rectangle is in fact a square congruent to the one in Figure 4b, since its
sides are all easily shown to be of length 2

√
2. Having rearranged the two half-rectangles to form the

square of Figure 4b, we may now ûnish triangulating to get Figure 4e. Finally, we proceed in reverse
order and rearrange the triangles of the triangulation to obtain anew our initial triangle in Figure 4f.
We thus conclude that our initial triangle and square have the same area.
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(a) An initial triangle (b) A square with the same area

(c) Applying Lemma 1 (d) Rearranging the rectangles

(e) A ûnal triangulation (f) Rearranging back into the initial triangle

Figure 4. A square and a triangle with both the same measure of area and area

5. Generalisations

Several interesting questions naturally arise from the Wallace-Bolyai-Gerwien theorem. he
theorem tells us that polygons of equalmeasure of area can be decomposed into respectively congruent
triangles. What happens if we impose conditions on the triangles, for example, that they all have the
same area? In 1965, Richman andhomas asked:
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Question 1 ([Hew+67, Question 5479]). Let N be an odd integer. Can a rectangle be dissected into
N nonoverlapping triangles, all having the same area?

In 1970, Monsky used 2-adic valuations to provide an answer, proving what is now known as
Monsky’s heorem:

heorem 2 ([Mon70]). A square can never be divided into an odd number of nonoverlapping triangles
Ti , all of the same area.

Hilbert also proposed a generalisation of the theorem. His third problem concerned its generalisa-
tion to three dimensions, using congruent tetrahedra instead of congruent triangles, and was the
ûrst of his 23 problems to be solved. He believed this generalisation was impossible, and so asked:

Question 2 ([Hil02b, Problem 3, p. 449]). Specify two tetrahedra of equal bases and equal altitudes
which can in no way be split up into congruent tetrahedra, and which cannot be combined with
congruent tetrahedra to form two polyhedra which themselves could be split up into congruent
tetrahedra.

Dehn [Deh01], Hilbert’s student, provided an impossibility proof using abstract algebra, and his
proof introduced what is now known as the Dehn invariant for polyhedra. Sydler [Syd65] then
succeeded in showing that an analogous decomposition of polyhedra is possible if and only if the
two polyhedra have the same volume and Dehn invariant.

Figure 5. Dudeney’s 1902 hinged dissection of a square into a triangle [Abb+12, Fig. 2]

he last generalisation is perhaps the most interesting. We deûne a hinged dissection to be “a chain
of polygons hinged at vertices that can be folded in the plane continuously without self-intersection”
[Abb+12]. For example, Figure 5 shows a hinge decomposition of a square into an equilateral triangle.
Given two ûgures with the same area, one might wonder if it is always possible to ûnd a hinge
decomposition transforming one into the other. Not only does this happen to be the case, but Abbott
et al. [Abb+12] proved the following much stronger result:

heorem 3 ([Abb+12, heorem 1]). Any ûnite set of polygons of equal area have a common hinged
dissection that can fold continuously without intersection between the polygons.

hat is to say, given a triangle, a pentagon, and a kite of equal areas, there exists a hinged dissection
that forms the triangle in one conûguration, the pentagon in another conûguration, and the kite in
yet another.

We conclude with two questions of our own:

Question 3. Does Monsky’s heorem generalise to cubes? hat is, given a cube S, it has the same
volume and Dehn invariant as itself, and so it can be decomposed into tetrahedra. Can this decom-
position ever into an odd number of tetrahedra? For which positive integers N does there exist a
decomposition into N tetrahedra?
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Question 4. Bound from below the number of triangles required to show that two polygons have
the same area.
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