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Abstract. The K4LR and GL systems of modal logic will be presented in the context of
a Hilbert-style system of sentential logic. Löb’s theorem and Löb’s Derivability Criterion
will be proven. Similarities between properties of Bew and GL’s � will be drawn, before
proving that� in GL can be interpreted as Bew in Peano arithmetic by means of realisations.
The soundness of this interpretation will be proven by Solovay’s arithmetical completeness
theorem. From this, applications of GL will be considered, including a proof of Gödel’s
Second Incompleteness Theorem.

1. Introduction

A provability logic is a modal logic studying what formal arithmetics can express about
their provability predicates.[4] Provability logics trace their roots to Gödel’s 1933 paper,
where it was first hinted that provability could be treated as a modal operator. They
also have as roots the quests of Gödel, Henkin, Löb and Tarski to discover what formal
arithmetic could express about the truth or the provability of its own sentences. Although
numerous provability logics have been advanced and studied, including GL, GLS, PrL,
and K4LR[3,4], in this paper we focus on GL, using GLS and K4LR only as tools to prove
properties of GL.

The provability logic GL, named in honour of Kurt Gödel and Martin Löb, is an exten-
sion of the modal logic K and has two important results. The first is Solovay’s arithmetical
completeness theorem, which states that the theorems of GL are provable in Peano arith-
metic under all substitutions of sentences of PA for modal sentence letters.[1] This makes
GL valuable as a provability logic since any theorem proven in the general context of GL
will hold for any “translation” into PA, and proving in this context is typically a much
easier feat than proving each possible translation directly in PA. We prove part of this the-
orem, the remainder being beyond the scope of this primer. The second is the fixed-point
theorem, which can be seen as GL’s analogue of Peano arithmetic’s Diagonal Lemma, with
the added feature of fixed points being logically equivalent.[1, 4] It will not be presented,
although those interested should see [3, p. 76] and [1, p. 104].

We start our primer by presenting GL’s syntax and proof theory, deviating from tradi-
tional accounts by presenting it in the context of a Hilbert-style deduction system. We
also present the provability logic K4LR, which will be crucial in proving part of Solovay’s
arithmetical completeness theorem. Several useful theorems and lemmas will be proven at
this point, before taking a brief interlude into Peano arithmetic. Here we prove several key
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properties of the provability relation known as the Löb Derivability Conditions, which sim-
plify proving Gödel’s Second Incompleteness Theorem and Löb’s Theorem. We also prove
Löb’s theorem, which answers Henkin’s question of whether or not fixed points of the prov-
ability relation are provable, i.e., it establishes the relation between PA $ S Ø Bew(xSy)

and PA $ S.[4] To tie everything together, we proceed with a partial proof of Solovay’s
arithmetical completeness theorem, concluding with applications of GL, including a proof
of Gödel’s Second Incompleteness Theorem.

2. Modal Logic

Modal logic is typically presented in the context of a suitable system of sentential cal-
culus, with the addition of two formal symbols, � and ♦. Classically, these two symbols
have been interpreted through Kripke semantics as “it is necessary that” and “it is possible
that”, with one as a primitive symbol and the other as defined notation. For example, one
could take � as the primitive symbol and define ♦ as an abbreviation for  � , or take ♦
as the primitive symbol and define � as an abbreviation for  ♦ . We take � to be our
primitive symbol and will make no use of ♦. The addition of this formal symbol entails
additional inference rules, presented below.

Most presentations of modal logic include as axioms all tautologies. In our presentation,
we instead use a Hilbert-style deduction system, mostly as presented in [2]. Although
both approaches generate the same theorems by the Tautology Theorem [2, 7.1], we find
our approach preferable because of its simplicity. For reasons which will soon be clear,
we introduce an additional symbol, K, to which we always assign the truth value false.
Thus, “Ñ” is our adequate connective and, since they are truth-functionally equivalent,
we redefine ( A) to be an abbreviation of (AÑ K).
Letting A, B, C, . . . , be metavariables ranging over sentences, we can thus recursively

redefine the syntax of our sentential calculus’ sentences to be as follows:
‚ K is a sentence;
‚ each sentence letter is a sentence; and
‚ if A and B are sentences, then so is (AÑ B).

We retain the following Hilbert-style axioms from [2]:

AÑ (BÑ A)(SA1)

(AÑ (BÑ C))Ñ ((AÑ B)Ñ (AÑ C))(SA2)

( AÑ  B)Ñ (BÑ A)(SA3)

and modus ponens,

If $ A and $ AÑ B, infer $ B,(MP)

as the sentential calculus’ sole inference rule.
In presenting modal logic, we expand our sentential calculus’ syntax to obtain a recursive

definition of modal sentences:
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‚ if A is a sentence, then so is �(A).

As usual, we omit parentheses where no ambiguity ensues to alleviate notation, taking
� to be the tightest binding operator. That’s to say, �A Ñ B is to be interpreted as
(�(A) Ñ B) rather than �(A Ñ B). Unless otherwise specified, we will henceforth take
“sentence” to mean “modal sentence” and let A, B, C, . . . , range over modal sentences.
We now deal with substitution. If F is a sentence, the result of substituting A for p in

F, F[A/p], may be defined recursively as follows:[1]

‚ if F = p, then F[A/p] is A;
‚ if F = q and q ‰ p, then F[A/p] is A;
‚ if F = K, then F[A/p] is K;
‚ (FÑ G)[A/p] is (F[A/p]Ñ G[A/p]); and
‚ �(F)[A/p] is �(F[A/p]).

Having dealt with our logics’ syntax, we are now free to present our first system of modal
logic, GL. We take S to be a given set of sentences, usually GL or K4LR. We introduce an
inference rule known as necessitation,

If S $ A, infer S $ �(A),(N)

a distribution axiom,

(�(AÑ B))Ñ (�AÑ �B),(DA)

and the axiom:

�(�AÑ A)Ñ �A.(L)

That’s to say, for any modal sentencesA and B, we have GL $ (�(AÑ B))Ñ (�AÑ �B)

and GL $ �(�AÑ A)Ñ �A.
Our second system, K4LR, retains (N) and (DA), drops (L), introduces the axiom

�AÑ ��A,(F)

and introduces the inference rule

If S $ (�AÑ A), infer S $ �(A).(LR)

To gain a feel for the workings of GL and K4LR, we will prove a few theorems which
we will find useful later when proving properties of GL and K4LR. To avoid proving these
theorems twice, once for each system, we notice that GL and K4LR have a few immediate
resemblances (in fact, we will soon show GL and K4LR to have the same theorems): each
contains all tautologies, all instances of the distribution axiom, and is closed under modus
ponens, necessitation, and substitution. We call any such system normal and denote it
by L.[1] That’s to say, if L $ A, then GL $ A and K4LR $ A.

Lemma 1 (Substitution Lemma). If L $ AØ B, then L $ F[A/p]Ø F[B/p].

Proof. By induction on complexity. Omitted. �
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The following two theorems enable us to prove the third, which says that GL can prove
K4LR’s axiom (F). Their proofs are straightforward.

Theorem 2. If L $ AÑ B then L $ �AÑ �B.

Proof.

L $ AÑ B hypoth.(1)

L $ �(AÑ B) (1), (N)(2)

L $ �(AÑ B)Ñ (�AÑ �B) (DA)(3)

L $ �AÑ �B (2), (3), (MP) �(4)

Theorem 3. L $ �(A^ B)Ø (�A^�B)

Proof.

L $ (A^ B)Ñ A taut.(1)

L $ (A^ B)Ñ B taut.(2)

L $ �(A^ B)Ñ �A (1), 2(3)

L $ �(A^ B)Ñ �B (2), 2(4)

L $ AÑ (BÑ (A^ B)) taut.(5)

L $ �AÑ �(BÑ (A^ B)) (5), 2(6)

L $ �(BÑ (A^ B))Ñ (�BÑ �(A^ B)) (DA)(7)

L $ �AÑ (�BÑ �(A^ B)) (6), (7), [2, (9.2)](8)

L $ (�A^�B)Ñ �(A^ B)) (8), truth funct.(9)

L $ �(A^ B)Ñ (�A^�B) (3), (4), truth funct.(10)

L $ �(A^ B)Ø (�A^�B) (9), (10), abbrev. �(11)

Theorem 4. GL $ �AÑ ��A

Proof. We make use of the following tautology:

(:) AÑ ((B^ C)Ñ (C^A))
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GL $ AÑ ((��A^�A)Ñ (�A^A)) (:)(1)

GL $ AÑ ((�(�A^A))Ñ (�A^A)) (1), 3(2)

GL $ �(AÑ ((�(�A^A))Ñ (�A^A))) (2), (N)(3)

GL $ �AÑ �((�(�A^A))Ñ (�A^A)) (3), (DA)(4)

GL $ �(�(�A^A)Ñ (�A^A))Ñ �(�A^A) (L)(5)

GL $ �AÑ �(�A^A) (4), (5), [2, (9.2)](6)

GL $ �(�A^A)Ñ ��A 3(7)

GL $ �AÑ ��A (6), (7), [2, (9.2)] �(8)

3. Peano Arithmetic

We must prove several additional theorems about the provability relation in Peano
Arithmetic. We take throughout Bew to be ThmPA and take Prv to be PrvPA.

Theorem 5 (Löb’s Derivability Criterion). The provability relation, Bew, has the fol-
lowing properties:

(i) If PA $ S, then PA $ Bew(xSy)

Proof. This is a consequence of [2, Corollary 22.12]. �

(ii) PA $ Bew(x(SÑ T)y)Ñ (Bew(xSy)Ñ Bew(xT y))

Proof. By [2, Corollary 22.11] and the following observation:

PA $ Prv(xSÑ T y, y)^ Prv(xSy, y 1)Ñ Prv(xT y, y ˚ y 1 ˚ xxT yy). �

(iii) PA $ Bew(xSy)Ñ Bew(xBew(xSy)y)

Proof. Omitted. �

Together, these properties allow us to prove the following fascinating and useful theorem:

Theorem 6 (Löb’s Theorem). PA $ Bew(xSy)Ñ S if and only if PA $ S.

Proof. The right-to-left direction is trivial.[3]
For the sakes of brevity and clarity, we’ll abbreviate “Bew(xXy)” by “BX”.
By the diagonal lemma, there exists a sentence A such that PA $ A Ø (BA Ñ S).

Then,
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PA $ AØ (BAÑ S) [2, 21.6](1)

PA $ AÑ (BAÑ S) (1)(2)

PA $ B(AÑ (BAÑ S)) 5(i)(3)

PA $ B(AÑ (BAÑ S))Ñ(BAÑB(BAÑ S)) 5(ii)(4)

PA $ BAÑ B(BAÑ S) (3), (4), (MP)(5)

PA $ B(BAÑ S)Ñ (BBAÑ BS) 5(ii)(6)

PA $ BAÑ (BBAÑ BS) (5), (6), [2, (9.2)](7)

PA $ BAÑ BBA 5(iii)(8)

PA $ BAÑ BS (7), (8), truth funct.(9)

PA $ BSÑ S hypoth.(10)

PA $ BAÑ S (9), (10), [2, (9.2)](11)

PA $ A (1), (11), (MP)(12)

PA $ BA 5(i)(13)

PA $ S (11), (12), (MP) �(14)

4. Relation between GL and K4LR

We notice that GL and K4LR are very similar, they differ only on account of (L) and
(LR), as we have already shown in Theorem 4 that GL $ �A Ñ ��A, K4LR’s axiom
(F). In fact, as the following theorem shows, GL and K4LR have the same theorems.

Theorem 7. GL and K4LR have the same theorems.

Proof. The proof is by Boolos.[1]
We notice that by Theorem 4, GL $ �A Ñ ��A. Moreover, GL is closed under the

Löb rule, since:

GL $ �AÑ A hypoth.(1)

GL $ �(�AÑ A) (1), (N)(2)

GL $ �(�AÑ A)Ñ �A (L)(3)

GL $ �A (2), (3), (MP)(4)

GL $ A (1), (4), (MP)(5)

Thus, since GL can prove all of the axioms of K4LR and is closed under its inference rules,
if K4LR $ A, then GL $ A.
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Conversely, let B = �(�A Ñ A), C = �A and D = B Ñ C. We will show that
K4LR $ D, that’s to say, that K4LR can prove GL’s axiom (L). We have that:

K4LR $ �(BÑ C)Ñ (�BÑ �C) (DA)(1)

K4LR $ �DÑ (�BÑ �C) (1), abbrev.(2)

K4LR $ �(�AÑ A)Ñ (��AÑ �A) (DA)(3)

K4LR $ BÑ (�CÑ C) (3), abbrev.(4)

K4LR $ �(�AÑ A)Ñ ��(�AÑ A) 4(5)

K4LR $ BÑ �B (5), abbrev.(6)

K4LR $  (�BÑ �C)Ñ  �D (6), [2, 6.11(b)](7)

K4LR $ ( �CÑ  �B)Ñ  �D (7), 1, [2, 6.11(b)](8)

K4LR $  �BÑ B (6), [2, 6.11(b)](9)

K4LR $ ( �CÑ  B)Ñ  �D (8), (9), [2, (9.2)](10)

K4LR $  (BÑ �C)Ñ  �D (10), 1, [2, 6.11(b)](11)

K4LR $ �DÑ (BÑ �C) (11), [2, 6.11(b)](12)

K4LR $ �DÑ (BÑ C) (4), (12), truth funct.(13)

K4LR $ �DÑ D (13), abbrev.(14)

K4LR $ D (14), (LR)(15)

We thus see that if GL $ A, then K4LR $ A. �

5. Relation between GL and Peano arithmetic

We now show how K4LR and GL can be used as a provability logics for Peano arithmetic.
Readers may have noticed the strong tie between the axioms and inference rules of K4LR
and GL, and the theorems and properties proven about PA and Bew in Section 3. Namely,
by interpreting � as Bew, we notice a direct correspondence between (N) and Theorem
5(i). We further notice a direct correspondence between (DA) and Theorem 5(ii). We can
also interpret (LR) as Löb’s Theorem, and (L) as a formalisation in GL of Löb’s Theorem.
But are K4LR and GL sound in regards to this interpretation? Is every theorem of K4LR
and GL provable in PA under the interpretation of � as Bew? Solovay’s arithmetical
completeness theorem, below, tells us that it is so. Is the converse true? Solovay’s theorem
tells us that it is nearly so.

We must first establish a mapping between modal logic and PA. We do so by means
of realisations.[1] A realisation is a function that assigns to each sentence letter in modal
logic a sentence of PA[1], and we use “˚” to range over such functions. We recursively
define a translation A˚ of a modal sentence A under a realisation ˚ as:

(1) K˚ = (0 ‰ 0), or your contradiction of choice;
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(2) p˚ = ˚(p);
(3) (AÑ B)˚ = (A˚ Ñ B˚); and
(4) �(A)˚ = Bew(xA˚y).

For example, �(K Ñ K)˚ = Bew(x(0 ‰ 0)Ñ (0 ‰ 0)y), and if we assume ˚ is a realisation
taking p to the sentence (s0 = 0+ s0), then (�(p)Ñ �(�(p)))˚ = Bew(x(s0 = 0+ s0)y)Ñ

Bew(xBew(x(s0 = 0+ s0)y)y).
With this out of the way, we have:

Theorem 8. If K4LR $ A, then for every realisation ˚, PA $ A˚.

Proof. We proceed by induction on complexity.
If A is an instance of the axioms (SA1), (SA2) or (SA3), then so will be A˚, and so

PA $ A˚.
If A is an instance of the distribution axiom, (DA), then A is of the form (�(B Ñ

C)) Ñ (�B Ñ �C). Then A˚ = Bew(xB˚ Ñ C˚y) Ñ (Bew(xB˚y) Ñ Bew(xC˚y)), which by
Theorem 5(ii) is a theorem of PA.

In the case of modus ponens, (MP), if PA $ (A Ñ B)˚ and PA $ A˚, then PA $ B˚

since (AÑ B)˚ = (A˚ Ñ B˚).
In the case of the Löb Rule, (LR), if PA $ (�AÑ A)˚ then PA $ A˚ by Löb’s Theorem,

since (�(A)Ñ A)˚ = Bew(xA˚y)Ñ A˚.
Finally, we deal with necessitation, (N). If PA $ A˚, then by Theorem 5(i), PA $

Bew(xA˚y). Thus by definition of realisations, PA $ (�(A))˚. �

Corollary 9. If GL $ A, then for every realisation ˚, PA $ A˚.

Proof. GL and K4LR have the same theorems by Theorem 7. �

Interestingly, this relation between GL and PA implies that GL can only prove truths
(relative to the intended model N) about PA. In fact, Solovay’s theorem is even stronger
and tells us that the provability logic GLS—whose axioms are all the theorems of GL and
all sentences of the form �A Ñ A, with modus ponens as its sole inference rule[1]—can
only prove truths about PA, and that the converse is true. We present the theorem here
in simplified form:

Theorem 10 (Solovay’s arithmetical completeness theorem). For every modal sentence
A of GLS and every realisation ˚, GLS $ A if and only if N |= A˚.

Proof. The proof is by Boolos. Assume that GLS $ A. Since by [2, 12.11], every theorem
of PA is true under the intended model if Bew(xA˚y) is true, then A˚ is a theorem of PA
and A˚ is true. Thus for every realisation ˚ and every modal sentence A, (�A Ñ A)˚ is
true. By Corollary 9, if A is a theorem of GL, then A˚ is a theorem of PA, and again by
[2, 12.11], A˚ is true. Thus, if GLS $ A, then N |= A.

The converse’s proof is non-trivial and omitted. See [1] and [3] for details. �
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Corollary 11. If GL $ A, then for every realisation ˚, N |= A˚.

Proof. Immediate from Theorem 10 and the definition of GLS. �

The above theorems are useful, not only as means of proving truths about PA, but
also of proving that a sentence is not a theorem of GL. For example, assume that p is a
theorem of GL. Then by Theorem 10, under any realisation ˚ such that ˚(p) = (0 ‰ 0),
N |= (0 ‰ 0), which is obviously false, and so p is not a theorem of GL. Now assume that
�pÑ q is a theorem of GL. Then by Theorem 9, under any realisation taking p to (0 = 0)

and q to (0 ‰ 0) in PA, PA $ Bew(x(0 = 0)y) Ñ (0 ‰ 0). Since (0 = 0) is a theorem of
PA, by Theorem 5(i), PA $ Bew(x(0 = 0)y). But then by modus ponens, PA $ (0 ‰ 0),
contradicting the consistency of PA. Therefore �pÑ q is not a theorem of GL.

6. Applications of GL

It is now easy to prove Gödel’s Second Incompleteness Theorem:

Theorem 12 (Gödel’s Second Incompleteness Theorem). If PA is consistent, then PA 0
Bew(x(0 ‰ 0)y).

Proof. We can formalise the above statement as

PA $  Bew(x(0 ‰ 0)y)Ñ  Bew(x Bew(x(0 ‰ 0)y)y).

But this can easily be reached through realisation:

GL $ �(�K Ñ K)Ñ �K (L)(1)

GL $  �K Ñ  �(�K Ñ K) (1), [2, 6.11(b)](2)

GL $  �K Ñ  �( �K) (2), abbrev.(3)

PA $ ( �K Ñ  �( �K))˚ (3), 9(4)

PA $  Bew(x(0 ‰ 0)y)Ñ  Bew(x Bew(x(0 ‰ 0)y)y) (4), 9 �(5)

This leads us to an interesting corollary by Boolos:

Corollary 13. The following assertion is provable in PA:

If the inconsistency of arithmetic is not provable, then the consistency
of arithmetic is undecidable.

Proof. The assertion is equivalent to

PA $  Bew(xBew(x(0 ‰ 0)y)y)Ñ ( Bew(x Bew(x(0 ‰ 0)y)y)^ Bew(x  Bew(x(0 ‰ 0)y)y)),
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which is easily derivable using GL:

GL $ �K Ñ ��K 4(1)

GL $  ��K Ñ  �K (1), [2, 6.11(b)](2)

GL $  �K Ñ  � �K 12(3)

GL $  ��K Ñ  � �K (2), (3), [2, (9.2)](4)

GL $  ��K Ñ  �  �K taut.(5)

GL $  ��K Ñ ( � �K ^ �  �K) (4), (5), truth funct.(6)

The assertion readily follows by means of realisation of (6). �
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