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Abstract. Erdős, Harary and Tutte first defined the dimension of a graph G as the min-
imum number n such that G can be embedded into the Euclidean n-space En with every
edge of G having length 1, see [3]. Although some have since extended the definition such
that only adjacent vertices may be separated by a distance of 1[1], this paper will focus
on the original definition. No general method is known for determining the dimension of
an arbitrary graph G but lower and upper bounds will be proven for arbitrary graphs. A
sharp upper bound will be given for k-partite graphs by generalising the proofs presented
by Erdős et al. for bipartite graphs[3] and by Buckley et al. for tripartite graphs[1]. New
findings further include a lower bound and applications to various classes of graphs.

1. Introduction

We define the dimension of a graph G, denoted dimG, as the least number n such
that G can be embedded into Rn with every edge of G having length 1, and we call such
an embedding a unit-embedding. That’s to say, if dimG = n, there exists an injective
mapping f : V(G)→ Rn, f(vk) = (xk1, . . . , xkn) such that if vkvj ∈ E(G),

(xk1 − xj1)
2 + · · ·+ (xkn − xjn)

2 = 1.

The dimension of a graph is related to many open problems in discrete geometry. For
example, the Hadwiger-Nelson problem, which seeks to determine the least number of
colours needed such that no two points at unit distance from each other in the plane are of
the same colour (see [7]), can be reduced to finding the largest possible chromatic number
of a finite graph of dimension 2. By showing that the Golomb graph and the Moser spindle
(both graphs of dimension 2, see figure 1) have chromatic number 4, a lower bound was set
on the chromatic number of the plane. Generalisations of the Hadwiger-Nelson problem
to higher dimensions n reduce to finding the largest possible chromatic number of a graph
of dimension n.

The intriguing geometry behind the dimension of a graph and behind unit-embeddings
will be explored in section 2 with examples such as platonic polyhedrals and antiprisms. We
will also see in section 2 that the equilateral dimension of Euclidean space (the maximum
number of equidistant points possible in a given En) is related to the dimension of complete
graphs.

Since no systematic method for determining the dimension of an arbitrary graph is
known, bounding the dimension of such graphs is an area of graph theory ripe for discov-
eries. A new lower bound will be presented in section 3. Further, known upper bounds
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(a) Moser Spindle (b) Golomb graph

Figure 1. Graphs with chromatic number 4 and dimension 2

for k-partite graphs will be presented in section 4, and for arbitrary graphs in sections 5
and 6.

2. Examples

Let us first consider a few trivial examples. The dimension of any path is 1 while the
dimension of any tree with three or more leaves is 2.

Example 1 (Platonic polyhedrals). Define the platonic polyhedral graphs to be the the
3-regular graphs which are the skeletons of platonic solids. It is clear that the cube has
dimension 2 (as evidence by figure 2b) and that the tetrahedron, octahedron, dodecahedron
and icosahedron have dimension 3.

Example 2 (Prism graphs and Cartesian product with K2). Similarly to the cube, every
prism graph (any 3-regular graph which is the skeleton of a prism in 3-space) has dimension
2. We notice that every prism graph has the same dimension as the identical cycles it has
as bases. To generalise this finding to “prisms” with arbitrary graphs as bases, we must
first introduce the Cartesian product of two graphs.

For two graphs G1 and G2, define the Cartesian product G1 × G2 as the graph on the
vertices V(G1)×V(G2). Two vertices u = (u1,u2) and v = (v1, v2) are adjacent in G1×G2

if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). Using the
Cartesian product, we can formalise our definition of the cube as C4×K2 and the n-gonal
prism graph as Cn × K2.
We can now generalise our findings for the prism graphs to any “prism” with a graph G

as its bases by taking the Cartesian product of G and K2. It is easy to see that dimG×K2 =

dimG. As shown in figure 2, we can simply “make a copy” of G in RdimG, that’s to say, for
every vertex v, create a vertex v ′ with the same coordinates and neighbours as v. Then
translate every vertex in this copy by the same unit vector of RdimG. After adding an
edge from every vertex of G to its corresponding translated vertex, the resulting graph is
clearly isomorphic to G× K2 and has the same dimension as G.
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(a) C4 (b) C4 × K2 (c) (C4 × K2)× K2

Figure 2. The Cartesian product with K2 preserves dimension (all edges
above have unit length)

Example 3 (Complete graphs). Let us consider complete graphs. The complete graph
on two vertices is a path and so dimK2 = 1. The complete graph on three vertices may
be drawn as an equilateral triangle and so dimK3 = 2, while the complete graph on four
vertices may be unit-embedded as the regular polyhedron in R3 and so dimK4 = 3. As
we will prove in the following proposition, our intuition that, in general, dimKn = n − 1

is correct. The author is deeply grateful to Professor I. Dimitrov (Queen’s University) for
his assistance in proving that the maximum number of equidistant points in Rn is n+ 1;
any errors or inaccuracies in the following proof are the author’s sole responsibility.

Proposition 1. The dimension of the complete graph on n vertices, Kn, is n− 1.

Proof. Since the vertex set of a unit-embedding of Kk+1 is no more than a set of k + 1

equidistant points, it suffices to show that the least m such that Rm can contain such a set
of points is m = k. Without loss of generality, we will assume that the distance between
each pair of points is 1 and that we have one point, v0, at the origin.
Let ~v1, . . . ,~vk denote the k vectors between the origin and the other k equidistant

points, v1, . . . , vk, in our set. By the hypothesis, ~vi ·~vi = 1 for all 1 6 i 6 k. Further, since
‖~vi −~vj‖ = 1 for all i 6= j, we have

(~vi ·~vi)2 − 2 (~vi ·~vj) + (~vj ·~vj)2 = 1

~vi ·~vj =
1

2
.
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Using this, we can construct the Gram matrix GM(~v1, . . . ,~vk), where

GM(~v1, . . . ,~vk) =

∣∣∣∣∣∣∣∣∣
~v1 ·~v1 ~v1 ·~v2 . . . ~v1 ·~vk
~v2 ·~v1 ~v2 ·~v2 . . . ~v2 ·~vk

...
... . . . ...

~vk ·~v1 ~vk ·~v2 . . . ~vk ·~vk

∣∣∣∣∣∣∣∣∣
GM(~v1, . . . ,~vk) =

∣∣∣∣∣∣∣∣∣∣
1 1

2
. . . 1

2

1

2
1

...
... . . . 1

2
1

2
. . . 1

2
1

∣∣∣∣∣∣∣∣∣∣
.

Results from linear algebra tell us that the determinant of GM(~v1, . . . ,~vk) is non-zero
if and only if ~v1, . . . ,~vk are linearly independent.
The matrix GM(~v1, . . . ,~vk) has eigenvalue 1/2 with multiplicity k − 1. Recalling that

the sum of the eigenvalues is the trace of the matrix, we see that the remaining eigenvalue,
λk, is also non-zero since

tr(GM(~v1, . . . ,~vk)) = λ1 + · · ·+ λk

k = (k− 1)
1

2
+ λk

λk =
k+ 1

2
.

Since the above matrix does not have 0 as an eigenvalue, its determinant is non-zero.
This implies that ~v1, . . . ,~vk are linearly independent. Since Rm can contain k linearly
independent vectors if and only if m > k, we see that k + 1 equidistant points, v0, . . . , vk
can be embedded in Rm if and only if m > k.
It immediately follows that dimKk+1 = k and so dimKn = n− 1. �

Example 4 (Antiprisms). Finally, we’ll define the n-gon antiprism graph on 2n vertices
(the skeleton of the antiprism with the n sided polygon as its base) as the graph composed
of two cycles Cn, an upper and a lower one, where there is an edge from each i-th vertex
on the lower cycle to the i-th and the (i + 1 mod n)-th vertices on the upper cycle (see
figure 3 for examples on six and eight vertices). It is then clear that each antiprism has
dimension 3: the cycles can be embedded with unit length edges in parallel planes (they
each have dimension 2) and the edges joining the cycles can be embedded with length 1,
forming a series of equilateral triangles around the “circumference” of the antiprism.

3. Lower bounds

The following theorem and corollary establish a lower bound for the dimension of graphs.

Theorem 2. For every graph G, dimG > dimH for all subgraphs H of G.

Proof. If G can be unit-embedded in RdimG, then so can H. Thus, dimG > dimH. �
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(a) 3-gon antiprism (b) 4-gon antiprism

Figure 3. Examples of antiprism graphs

Corollary 3. For every graph G, dimG > ω(G) − 1.

Proof. The clique numberω(G) is the order of the greatest clique of G. As seen in example
3, the dimension of the complete graph on n vertices, Kn, is n − 1. Since Kω(G) ⊆ G,
dimG > ω(G) − 1. �

4. Upper bound for k-partite graphs

We will proceed to generalise a theorem of Lenz[2] which Erdős, Harary and Tutte first
presented for bipartite graphs and which was expanded to tripartite graphs by Buckley
and Harary.

Theorem 4. Any k-partite graph has dimension at most 2k.

Proof. By the definition of the dimension of a graph, it is sufficient to show that a unit-
embedding of a k-partite graph in R2k exists.

For each partition 1 6 i 6 k, assign to each of its vertices the distinct coordinates
(x1, . . . , x2k) ∈ R2k such that x2

2i−1
+ x2

2i = 1/2 and all other xj are zero.
It is then clear that the distance from any vertex in a partition i to any vertex in a

partition j (i 6= j) is
√

1/2+ 1/2 = 1. �

5. Link to a graph’s chromatic number

Theorem 4 leads to the following important link between a graph’s dimension and its
chromatic number:

Corollary 5. For any graph G, dimG 6 2χ(G).

Proof. Partition G into the χ(G)-partite graph where every partition is of the same colour.
�

This corollary is consistent with examples we’ve already seen, such as the Moser Spindle
and Golomb graph of figure 1: both of these have dimension 2 and chromatic number 4.
Similarly complete graphs on n vertices have dimension n − 1 and chromatic number n
and it is clear that that n− 1 6 2n.
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6. Upper Bounds

We will next consider the upper bound on the dimension of an arbitrary graph presented
by Maehara and Rödl in On the Dimension to Represent a Graph by a Unit Distance
Graph [5].

Theorem 6 (Maehara and Rödl, 1990). Let G be a graph with maximum degree 6 n.
Then there exists a set of |V(G)| unit vectors {v : v ∈ V(G)} in R2n such that (1) any
n + 1 or fewer vectors are linearly independent, and (2) u and v are orthogonal if
and only if u and v are adjacent.

Proof. We will proceed by induction on |V(G)|. When |V(G)| = 2, it is clear that the
graph may be embedded into R1. Let ∆ be the maximum degree of G and u0 a vertex of
degree ∆. Suppose that the theorem is true for G−u0, and let {�v : v ∈ V(G−u0)} be a set
of unit vectors satisfying (1) and (2). Denote by 〈�v1, . . . , �vk〉 the linear subspace spanned
by �v1, . . . , �vk and by 〈�v1, . . . , �vk〉⊥ its orthogonal complement (every vector in R2n that is
orthogonal to every vector in 〈�v1, . . . , �vk〉). Let u1, . . . ,u∆ be the neighbours of u0 in G.

We want to show that we can find a unit vector �u0 orthogonal to all those in 〈�u1, . . . , �u∆〉.
First we show that (3) for any w1, . . . ,wn ∈ V(G − u0), 〈�u1, . . . , �u∆〉⊥ * 〈 �w1, . . . , �wn〉
(keeping in mind that n > ∆). Suppose, on the contrary, that 〈�u1, . . . , �u∆〉⊥ ⊂
〈 �w1, . . . , �wn〉. Then 〈�u1, . . . , �u∆〉 ⊃ 〈 �w1, . . . , �wn〉⊥, and since the vector space spanned
by 〈 �w1, . . . , �wn〉⊥ has dimension 2n−n > ∆, we must have 〈�u1, . . . , �u∆〉 = 〈 �w1, . . . , �wn〉⊥.
This implies that u1 is adjacent to w1, . . . ,wn by (2). But since u1 is also adjacent to u0
in G, the degree of u1 in G is greater than ∆, a contradiction. Thus (3) holds. Hence,

dim 〈�u1, . . . , �u∆〉⊥ ∩ 〈 �w1, . . . , �wn〉 < dim 〈�u1, . . . , �u∆〉⊥ = 2n− ∆.

Since it is impossible to cover a linear subspace of dimension 2n − ∆ by a finite number
of linear subspaces of dimension < 2n − ∆, there exists a unit vector �u0 in 〈�u1, . . . , �u∆〉⊥

which does not lie in any linear subspace of the form

〈 �w1, . . . , �wn〉 or 〈�u1, . . . , �u∆, �w〉⊥ .

Then the set of unit vectors

{�v : v ∈ V(G− u0)} ∪ {�u0}

satisfies the conditions (1) and (2) for the graph G. �

Corollary 7 (Maehara and Rödl, 1990). If G has maximum degree ∆(G), then dim(G) 6
2∆(G).

Proof. Set n = ∆(G) in Theorem 6 and let V = {�v : v(G)} be a set of unit vectors in R2∆(G)

satisfying conditions (1) and (2) for G. Then the unit distance graph on the “point” set
{(1/2)(1/2)�v : v ∈ V} in R2∆(G) is clearly isomorphic to G. �
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When dealing with k-partite graphs, the upper bound presented in theorem 4 is signif-
icantly better than the one in function of the maximum degree. Consider for example the
complete tripartite-graph on 3∗101000 vertices. This graph’s maximum degree is 2∗101000,
and so by corollary 6, would have a dimension of at most 4 ∗ 101000. However, theorem 4
tells us that it has a dimension of at most 6, an outstanding improvement. We thus see
that the upper bound presented in corollary 7 is far from being sharp.

Despite the example just given and that for every graph G, χ(G) 6 ∆(G)+ 1, the looser
upper bound given by corollary 7 is not without use. Since determining the chromatic
number of a graph is a NP-complete problem (see [6]), Cobham’s thesis implies that χ(G)
is infeasible to compute if P 6=NP (see [4]).

7. Open problems

Since so little is known about the dimension of a graph, we leave the reader with the
following open problems:

Open Question 1 (Erdős, Harary and Tutte). A graph G is of critical dimension n if
dimG = n and for any proper subgraph H, dimH < n. Characterise graphs of critical
dimension n for at least n > 3.

Open Question 2 (Kavanagh). Given the arbitrarily large discrepancy between the upper
bound of theorem 6 and the one found for k-partite graphs in theorem 4, can we find a
better upper bound for arbitrary graphs?

Open Question 3 (Kavanagh). Does a general method for obtaining the dimension of
a graph exist, short of iteratively trying to unit-embed a graph in every Euclidean space
between the relevant bounds? Can a graph’s dimension be determined from its adjacency
matrix?

Open Question 4 (Kavanagh). In section 2, we saw how the dimension of a graph G is
affected by its Cartesian product with the graph K2. How is the dimension of a graph
affected by other operations, such as complementation?

References

[1] Fred Buckley and Frank Harary, On the Euclidean dimension of a wheel, Graphs Combin. 4 (1988),
no. 1, 23–30. MR922157 (88m:05074)

[2] Paul Erdős, On sets of distances of n points in Euclidean space, Publications of the Mathematical
Institute of the Hungarian Academy of Sciences 5 (1960), 165–169.

[3] Paul Erdős, Frank Harary, and William T. Tutte, On the dimension of a graph, Mathematika 12 (1965),
118–122. MR0188096 (32 #5537)

[4] Steven Homer and Alan L. Selman, Complexity theory, Encyclopedia of Computer Science and Tech-
nology 26 (1992June), 77–100.

[5] Hiroshi Maehara and Vojtěch Rödl, On the dimension to represent a graph by a unit distance graph,
Graphs Combin. 6 (1990), no. 4, 365–367. MR1092585 (91m:05176)

7



[6] Eric W. Weisstein, Chromatic number, MathWorld—A Wolfram Web Resource (2011).
http://mathworld.wolfram.com/ChromaticNumber.html.

[7] , Hadwiger-nelson problem, MathWorld—A Wolfram Web Resource (2011).
http://mathworld.wolfram.com/Hadwiger-NelsonProblem.html.

8


